Influence of reducing conditions of glass melting on phase transformations in zinc aluminosilicate glasses nucleated by titania
Dymshits O. S.
1, Eremeev K.N.2, Alekseeva I. P.1, Tsenter M. Ya.1, Basyrova L.R.3, Loiko P. A.
2, Popkov V. I.
4, Zhilin A.A.5
1Vavilov State Optical Institute, St. Petersburg, Russia
2Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen Normandie, Caen, France
3Université de Franche-Comté, CNRS, Institut FEMTO-ST, Besançon, France
4Ioffe Institute, St. Petersburg, Russia
5D.V. Efremov Institute of Electrophysical Apparatus, St. Petersburg, Russia
Email: vodym@goi.ru, kirilleremeev42@gmail.com, vgolub19@gmail.com, myzenter@gmail.com, lizaveta.lel@gmail.com, kinetic@tut.by, vip-07@yandex.ru, zhilin1311@yandex.ru
The influence of strongly reducing conditions of glass melting on phase transformations in titanium-containing glasses of the zinc aluminosilicate system has been investigated. The glass was melted with the addition of aluminium powder as a reducing agent. The glass-ceramics were obtained by heat treatments at temperatures ranging from 720oC to 1350oC. The processes of liquid phase separation and crystallization occurring in this glass during its secondary heat treatment were studied using structurally sensitive methods. The results are compared with the data for materials obtained under oxidizing conditions. It is shown for the first time that the sequence of phase transformations in glasses melted under strong reducing and oxidizing conditions is similar, but reducing conditions accelerate the gahnite crystallization and slow down the rutile and cristobalite crystallization, which indicates the entry of Ti3+ ions into the liquid phase separated zinc alumotitanate and zinc aluminate amorphous regions, as well as into the residual glass at the initial stages of phase decomposition. Broadband absorption of glass-ceramics in the visible and near-IR regions of the spectrum is caused by Ti3+ ions and Ti3+-Ti4+ pairs in gahnite, rutile crystals and in the residual glass. Broadband luminescence of glass-ceramics was found to be due to Ti3+ ions and Ti3+-Ti4+ pairs in gahnite nanocrystals rather than impurity Cr3+ ions, which was observed in glass melted under oxidizing conditions. Keywords: glass-ceramics, red-ox conditions of glass melting, gahnite, rutile, absorption, luminescence.
- J. Deubener, M. Allix, M.J. Davis, A. Duran, T. Hoche, T. Honma, T. Komatsu, S. Kruger, I. Mitra, R. Muller, S. Nakane, M.J. Pascual, J.W.P. Schmelzer, E.D. Zanotto, S. Zhou. J. Non-Cryst. Solids, 501, 3-10 (2018). DOI:10.1016/j.jnoncrysol.2018.01.033
- S.D. Stookey. Method of Making Ceramics and Product Thereof, U.S. Pat. No. 2,920,971, January 12, 1960
- G.H. Beall, D.A. Duke. J. Mater. Sci., 4, 340-352 (1969). DOI: 10.1007/BF00550404
- A.J. Stryjak, P.W. McMillan. J. Mater. Sci., 13, 1794-1804 (1978). DOI: 10.1007/BF00548743
- Z. Strnad. Glass-Ceramic Materials (Elsevier, Amsterdam, The Netherlands, 1986), p. 101-105
- L.R. Pinckney. Transparent glass-ceramics containing gahnite. U.S. Patent No. 4,687,750; 1987
- L.R. Pinckney. J. Non-Cryst. Solids, 255, 171-177 (1999). DOI: 10.1016/S0022-3093(99)00368-3
- G.H. Beall, L.R. Pinckney. J. Am. Ceram. Soc., 82, 5-16 (1999). DOI: 10.1111/j.1151-2916.1999.tb01716.x
- V.V. Golubkov, O.S. Dymshits, V.I. Petrov, A.V. Shashkin, M.Ya. Tsenter, A.A. Zhilin, U. Kang. J. Non-Cryst. Solids., 351, 711 (2005). DOI: 10.1016/j.jnoncrysol.2005.01.071
- E. Tkalvcec, S. Kurajica, H. Ivankovic. J. Non-Cryst. Solids, 351, 149-157 (2005). DOI: 10.1016/j.jnoncrysol.2004.09.024
- A.R. Molla, A.M. Rodrigues, S.P. Singh, R.F. Lancelotti, E.D. Zanotto, A.C.M. Rodrigues, M.R. Dousti, A.S.S. de Camargo, C.J. Magon, I.A.A. Silva. J. Am. Ceram. Soc., 100, 1963-1975 (2017). DOI: 10.1111/jace.14753
- P. Loiko, A. Belyaev, O. Dymshits, I. Evdokimov, V. Vitkin, K. Volkova, M. Tsenter, A. Volokitina, M. Baranov, E. Vilejshikova, A. Baranov, A. Zhilin. J. Alloys Compd., 725, 998-1005 (2017). DOI: 10.1016/j.jallcom.2017.07.239
- A.L. Mitchel, D.E. Perea, M.G. Wirth, J.V. Ryan, R.E. Youngman, A. Rezikyan, A.J. Fahey, D.K. Schreiber. Scr. Mater., 203, 114110 (1-6) (2021). DOI: 10.1016/j.scriptamat.2021.114110
- S. Kurajica, J. vSipuvsic, M. Zupancic, I. Brautovic, M. Albrecht. J. Non-Cryst. Solids, 553, 120481(1-8) (2021). DOI:10.1016/j.jnoncrysol.2020.120481
- Y. Guo, Y. Lu, C. Liu, J. Wang, J. Han, J. Ruan. Alloys Compd., 851, 156891(1-8) (2021). DOI: 10.1016/j.jallcom.2020.156891
- K. Eremeev, O. Dymshits, I. Alekseeva, A. Khubetsov, S. Zapalova, M. Tsenter, L. Basyrova, J.M. Serres, X. Mateos, P. Loiko, V. Popkov, A. Zhilin. J. Eur. Ceram. Soc., 44, 3362 (2024). DOI:10.1016/j.jeurceramsoc.2023.12.026
- K.N. Eremeev, O.S. Dymshits, I.P. Alekseeva, A.A. Khubetsov, M.Ya. Tsenter, S.S. Zapalova, L.R. Basyrova, P.A. Loiko, A.A. Zhilin. Opt. Spectrosc., 132, 152-158 (2024). DOI: 10.61011/EOS.2024.02.58450.5815-23
- P. Scherrer, J. Abh. Akad. Wiss. Gött., Math.-Phys. Kl. 2, 98 (1918)
- I. Alekseeva, A. Baranov, O. Dymshits, V. Ermakov, V. Golubkov, M. Tsenter, A. Zhilin. J. Non-Cryst. Solids, 357, 3928 (2011). DOI: 10.1016/j.jnoncrysol.2011.08.011
- I.P. Alekseeva, O.S. Dymshits, V.A. Ermakov, A.A. Zhilin, M.Ya. Tsenter. Glass Phys. Chem., 39, 113-123 (2013). DOI: 10.1134/S1087659613020028
- I. Alekseeva, O. Dymshits, V. Ermakov, V. Golubkov, A. Malyarevich, M. Tsenter, A. Zhilin, K. Yumashev. Phys. Chem. Glas. Eur. J. Glass Sci. Technol. B, 53, 167-180 (2012)
- V. Mohavcek-Grovsev, M. Vrankic, A. Maksimovic, V. Mandic. J. Alloys Compd., 697, 90-95 (2017). DOI: 10.1016/j.jallcom.2016.12.116
- I.P. Alekseeva, N.M. Belyaevskaya, Ya.S. Bobovich, M.Ya. Tsenter, T.I. Chuvaeva. Opt. Spectrosc., 45, 175 (1978)
- V.F. Lebedev, V.M. Marchenko, N.N. Mel'nik, V.A. Myzina. Quantum Electron., 26, (7) 617-620 (1996). DOI: 10.1070/QE1996v026n07ABEH000738
- B.M. Loeffler, R.G. Burns, J.A. Tossell, D.J. Vaughan, K.H. Johnson. Proceedings of the Fifth Lunar Conf., Supplement 5, Geochim. Cosmochim. Acta, 3, 3007 (1974)
- M. Kumar, A. Uniyal, A.P.S. Chauhan, S.P. Singh. Bull. Mater. Sci., 26, 335-341 (2003). DOI: 10.1007/BF02707456
- L.E. Bausa, I. Vergara, J. Garcia-Sole, W. Strek, P.J. Deren. J. Appl. Phys., 68, 736 (1990). DOI: 10.1063/1.346807
- E.M. Dianov, V.F. Lebedev, Yu.S. Zavorotnyi. Quantum Electron., 31, (2) 187-188 (2001). DOI: 10.1070/QE2001v031n02ABEH001915
- K. Morinaga, H. Yoshida, H. Takebe. J. Am. Ceram. Soc., 77, 3113 (1994). DOI: 10.1111/j.1151-2916.1994.tb04557.x
- S.A. Basun, T. Danger, A.A. Kaplyanskii, D.S. McClure, K. Petermann, W.C. Wong. Phys. Rev. B, 54, 6141 (1996). DOI: 10.1103/PhysRevB.54.6141
- A. Sanchez, A.J. Strauss, R.L. Aggarwal, R.E. Fahey. IEEE J. Quantum Electron., 24 (6), 1002 (1988). DOI: 10.1109/3.220
- V.M. Khomenko, K. Langer, H. Rager, A. Fett. Phys. Chem. Minerals, 25, 338-346 (1998). DOI: 10.1007/s002690050124
- L.H.C. Andrade, S.M. Lima, A. Novatski, A.M. Neto, A.C. Bento, M.L. Baesso, F.C.G. Gandra, Y. Guyot, G. Boulon. Phys. Rev. B, 78, 224202 (2008). DOI: 10.1103/PhysRevB.78.224202
- M.J. Norman, L.D. Morpeth, J.C. McCallum. Mater. Sci. Eng., 106 (3), 257-262 (2004). DOI: 10.1016/j.mseb.2003.09.032
- A. Deepthy, M.N. Satyanarayan, K.S.R.K. Rao, H.L. Bhat. J. Appl. Phys., 85 (12), 8332-8336 (1999). DOI: 10.1063/1.370679
- P.F. Moulton, J.G. Cederberg, K.T. Stevens, G. Foundos, M. Koselja, J. Preclikova. Opt. Mater. Express, 9 (5), 2216 (2019). DOI: 10.1364/OME.9.002216
- A. Sanchez, R.E. Fahey, A.J. Strauss, R.L. Aggarwal. Opt. Lett., 11, 363 (1986). DOI: 10.1364/ol.11.000363
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.