Study of the process of holographic formation of multiplexed chirped multilayer diffraction structures formed in a photopolymer material with liquid crystals
Sharangovich S. N.
1, Dolgirev V. O.
1, Rastrygin D. S.
11Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
Email: shr@tusur.ru, vitial2@mail.ru, daniil.rastrygin@tusur.ru
A generalized analytical model is presented that takes into account the temporary change in the initial conditions of holographic formation due to the photoinduced change in the optical absorption of multiplexed chirped multilayer inhomogeneous holographic diffraction structures formed in a photopolymer material with a high proportion of nematic liquid crystals. Using numerical simulation, it was shown that during the formation of each individual diffraction grating in each individual layer, the refractive index profile can have a two-dimensional inhomogeneity, which is caused by both the photoinduced absorption of the material and the phase inhomogeneity of the recording radiation. Thus, the developed analytical model allows one to determine in advance the type of grating profile for chirped multilayer holographic diffraction structures, which is necessary for a more accurate determination of the diffraction characteristics of such structures. Keywords: photopolymer materials, liquid crystals, multilayer diffraction structures.
- V.G. Chigrinov, V.M. Kozenkov, H-S. Kwok. Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley \& Sons, 2008). DOI: 10.1002/9780470751800
- V.G. Chigrinov. Crystals., 3 (4), 149--162 (2013). DOI: 10.3390/cryst3010149
- A. Komar, A. Tolstik, E. Melnikova, A. Muravsky. Applied Optics, 54 (16), 5130--5135 (2015). DOI: 10.1364/AO.54.005130
- E. Melnikova, A. Tolstik, I. Rushnova, O. Kabanova, A. Muravsky. Applied Optics, 55 (23), 6491--6495 (2016). DOI: 10.1364/AO.55.006491
- I. Rushnova, E. Melnikova, A. Tolstik, A. Muravsky. Optics Commun., 413, 179--183 (2018). DOI: 10.1016/j.optcom.2017.12.029
- I.I. Rushnova, O.S. Kabanova, E.A. Melnikova, A.L. Tolstik. Nonlinear Phenomena in Complex Systems, 21 (3), 206--219 (2018)
- I.C. Khoo. Liquid crystals (John Wiley \& Sons, 2022). DOI: 10.1002/9781119705819
- X. Yan, X. Wang, Y. Chen. Appl. Phys., 125, 1--8 (2019). DOI: 10.1007/s00340-019-7173-4
- V.O. Dolgirev, S.N. Sharangovich. Bull. Russ. Acad. Sci. Phys., 86 (1), 18--23 (2022). DOI: 10.3103/S106287382201021X
- M.V. Shishova, A.Yu. Zherdev, D.S. Lushnikov, V.V. Markin, S.B. Odinokov. In HOLOEXPO 2020: XVIII Mezhdunarodnaya konferentsiya po golografii i prikladnym opticheskim tekhnologiyam (Mosk. Gos. Tekh. Univ., 2020), pp. 253--263 (in Russian)
- T. Wilm, J. Kibgies, R. Fiess, W. Stork. Photonics., 9 (6), 419 (2022). DOI: 10.1117/12.2596838
- E.A. Dovolnov, S.N. Sharangovich Proc. SPIE 6187, Photon Management II, 454--460 (2006). DOI: 10.1117/12.673833
- H. Wang, B. Zhang, C. Han, J. Ding. Opt. Exp., 29 (20), 32377--32387 (2021). DOI: 10.1364/OE.440221
- D. Tosi. Sensors., 18 (7), 2147 (2018). DOI: 10.3390/s18072147
- C. Spiess, Q. Yang, X. Dong, V.G. Bucklew, W.H. Renninger. Optica, 8 (6), 861--869 (2021). DOI: 10.1364/OPTICA.419771
- D.I. Dudnik, I.A. Kvasova, K.O. Gusachenko, A.O. Semkin, S.N. Sharangovich. Izv. Vyssh. Uchebn. Zaved., Fiz., 61 (1), 51--58 (2018) (in Russian)
- E.A. Dovolnov, S.V. Ustyuzhanin, S.N. Sharangovich. Izv. Vyssh. Uchebn. Zaved., J., 49 (10), 1129--1138 (2006)
- A.O. Semkin, S.N. Sharangovich. Physics Procedia., 70, 791--794 (2015). DOI: 10.1016/j.phpro.2015.08.269
- A.O. Semkin, S.N. Sharangovich. J. Phys.: Conf. Ser., 735, 012030 (2016). DOI: 10.1088/1742-6596/735/1/012030
- D.I. Derevyanko, S.I. Aliev, E.F. Pen, V.V. Shelkovnikov. Optoelectron., Instrum. Data Process., 57 (6), 584--591 (2021). DOI: 10.3103/S8756699021060042
- F.K. Bruder, T. Facke, T. Rolle. Polymers., 9 (10), 472 (2017). DOI: 10.3390/polym9100472
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.