Spatial modulation of terahertz radiation using optical vortex generators based on thin films of single-walled carbon nanotubes
1, Radivon A. V. 2, Paukov M. I. 2, Katyba G. M. 3, Raginov N. I. 4, Chernykh A. V. 1, Ezerskii A. S. 1, Rakov I. I. 2, Arsenin A. V. 2, Spector I. E. 5, Zaytsev K. I. 5, Krasnikov D. V. 4, Petrov N. V. 1, Nasibulin A. G. 4, Volkov V. 2, Burdanova M. G.2,3
1ITMO University, St. Petersburg, Russia
2Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia
3Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
4Skolkovo Institute of Science and Technology, Moscow, Russia
5Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: radivon.av@phystech.su
The results of a study of the performance of an orbital angular momentum modulator in the submillimeter range (340 GHz) based on thin films of single-walled carbon nanotubes are presented. Spiral zone wafers have been created to characterize the spatial modulation of the Gaussian beam using a state-of-the-art technique for synthesizing and depositing nanostructures of different thicknesses on the substrate. Using a combination of spiral zone plates allows the energy in the terahertz beam to be redistributed across the different generated optical vortices. The fabricated diffractive elements have tunable characteristics such as redistributable orbitally angular momentum and charge number. The obtained orbital angular momentum generators can be integrated into next-generation communication systems. Keywords: carbon nanotubes, spatial modulation of terahertz radiation, tunable optical element, spiral zone plate, optical vortex.
- O.A. Smolyanskaya, N.V. Chernomyrdin, A.A. Konovko, K.I. Zaytsev, I.A. Ozheredov, O.P. Cherkasova, M.M. Nazarov, J.-P. Guillet, S.A. Kozlov, Yu.V. Kistenev, J.-L. Coutaz, P. Mounaix, V.L. Vaks, J.-H. Son, H. Cheon, V.P. Wallace, Yu. Feldman, I. Popov, A.N. Yaroslavsky, A.P. Shkurinov, V.V. Tuchin. Progress in Quantum Electronics, 62, 1 (2018). DOI: 10.1016/j.pquantelec.2018.10.001
- R. Kersting, H.-T. Chen, N. Karpowicz, G.C. Cho. Journal of Optics A Pure and Applied Optics, 7 (2), 184 (2005). DOI: 10.1088/1464-4258/7/2/024
- A. Shafie, N. Yang, C. Han, J.M. Jornet, M. Juntti, T. Kurner. IEEE Network, 37 (3), 162 (2023). DOI: 10.1109/MNET.118.2200057
- M. Laikin. Lens Design. Optical Science and Engineering, 4th edition. (CRC Press, Boca Raton, FL, 2006)
- N.V. Petrov, B. Sokolenko, M.S. Kulya, A. Gorodetsky, A.V. Chernykh. Light: Advanced Manufacturing, 3 (1), 640 (2022). DOI: 10.37188/lam. 2022.043
- A.E. Willner, K. Pang, H. Song, K. Zou, H. Zhou. Applied Physics Reviews, 8 (4), 041312 (2021). DOI: 10.1063/5.0054885
- H. Moser, C. Rockstuhl. Laser and Photonics Reviews, 6, 219 (2012). DOI: 10.1002/lpor.201000019
- M.G. Burdanova, G.M. Katyba, R. Kashtiban, G.A. Komandin, E. Butler-Caddle, M. Staniforth, A.A. Mkrtchyan, D.V. Krasnikov, Yu.G. Gladush, J. Sloan, A.G. Nasibulin, J. Lloyd-Hughes. Carbon, 173, 245 (2021). DOI: 10.1016/j.carbon.2020.11.008
- D.S. Kopylova, D. Satko, E.M. Khabushev, A.V. Bubis, D.V. Krasnikov, T.M. Kallio, A.G. Nasibulin. Carbon, 167, 244 (2020). DOI: 10.1016/j.carbon.2020.05.103
- D.A. Ilatovskii, E.P. Gilshtein, O.E. Glukhova, A.G. Nasibulin. Advanced Science, 9 (24), 2201673 (2022). DOI: 10.1002/advs.202201673
- D.V. Krasnikov, B.Y. Zabelich, V.Y. Iakovlev, A.P. Tsapenko, S.A. Romanov, A.A. Alekseeva, A.K. Grebenko, A.G. Nasibulin. Chemical Engineering Journal, 372, 462 (2019). DOI: 10.1016/j.cej.2019.04.173
- R.R. Hartmann, J. Kono, M.E. Portnoi. Nanotechnology, 25, 322001 (2014). DOI: 10.1088/0957-4484/25/32/32200
- M. Jin, Y. Wang, M. Chai, C. Chen, Z. Zhao, T. He. Advanced Functional Materials, 32 (11), 2107499 (2021). DOI: 10.1002/adfm.202107499
- G.M. Katyba, N.I. Raginov, E.M. Khabushev, V.A. Zhelnov, A. Gorodetsky, D.A. Ghazaryan, M.S. Mironov, D.V. Krasnikov, Yu.G. Gladush, J. Lloyd-Hughes, A.G. Nasibulin, A.V. Arsenin, V. Volkov, K.I. Zaytsev, M.G. Burdanova. Optica, 10, 53 (2023). DOI: 10.1364/optica.475385
- I.V. Novikov, N.I. Raginov, D.V. Krasnikov, S.S. Zhukov, K.V. Zhivetev, A.V. Terentiev, D.A. Ilatovskii, A. Elakshar, E.M. Khabushev, A.K. Grebenko, S.A. Kuznetsov, S.D. Shandakov, B.P. Gorshunov, A.G. Nasibulin. Chemical Engineering Journal, 485, 149733 (2024). DOI: 10.1016/j.cej.2024.149733
- M.I. Paukov, V.V. Starchenko, D.V. Krasnikov, G.A. Komandin, Yu.G. Gladush, S.S. Zhukov, B.P. Gorshunov, A.G. Nasibulin, A.V. Arsenin, V. Volkov. Ultrafast Science, 3, 0021 (2023). DOI: 10.34133/ultrafastscience.0021
- M.G. Burdanova, A.P. Tsapenko, D.A. Satco, R. Kashtiban, C.D.W. Mosley, M. Monti, M. Staniforth, J. Sloan, Yu.G. Gladush, A.G. Nasibulin, J. Lloyd-Hughes. ACS Photonics, 6 (4), 1058 (2019). DOI: 10.1021/acsphotonics.9b00138
- B. Arash, Q. Wang. Scientific Reports, 3, 1782 (2013). DOI: 10.1038/srep01782
- E.M. Khabushev, D.V. Krasnikov, O.T. Zaremba, A.P. Tsapenko, A.E. Goldt. The Journal of Physical Chemistry Letters, 10, 6962 (2019). DOI: 10.1021/acs. jpclett.9b02777
- A. Kaskela, A.G. Nasibulin, M.Y. Timmermans, B. Aitchinson, A. Papadimitratos, Y. Tian, Z. Zhu, H. Jiang, D.P. Brown, A. Zakhidov, E.I. Kauppinen. Nano Letters, 10, 4349 (2010). DOI: 10.1021/nl101680s
- N.V. Chernomyrdin, A.O. Schadko, S.P. Lebedev, V.L. Tolstoguzov, V.N. Kurlov, I.V. Reshetov, I.E. Spektor, M. Skorobogatiy, S.O. Yurchenko, K.I. Zaitsev. Applied Physics Letters, 110, DOI: 10.1063/1.4984952
- G.M. Katyba, K.V. Zaytsev, N.V. Chernomyrdin, I.A. Shikunova, G.A. Komandin, V.B. Anzin, S.P. Lebedev, I.E. Spektor, V.E. Karasik, S.O. Yurchenko, I.V. Reshetov, V.N. Kurlov, M. Skorobogatiy. Advanced Optical Materials, 6, 1800573 (2018). DOI: 10.1002/adom.201800573
- K.I. Zaytsev, G.M. Katyba, N.V. Chernomyrdin, I.N. Dolganova, A.S. Kucheryavenko, A.N. Rossolenko, V.V. Tuchin, V.N. Kurlov, M. Skorobogatiy. Advanced Optical Materials, 8, 2000307 (2020). DOI: 10.1002/adom.202000307
- X. Guofu, M. Skorobogatiy. Journal of Infrared, Millimeter, and Terahertz Waves, 43, 728 (2022). DOI: 10.1007/s10762-022-00879-x
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.