Spatial modulation of terahertz radiation using optical vortex generators based on thin films of single-walled carbon nanotubes
1, Radivon A. V. 2, Paukov M. I. 2, Katyba G. M. 3, Raginov N. I. 4, Chernykh A. V. 1, Ezerskii A. S. 1, Rakov I. I. 2, Arsenin A. V. 2, Spector I. E. 5, Zaytsev K. I. 5, Krasnikov D. V. 4, Petrov N. V. 1, Nasibulin A. G. 4, Volkov V. 2, Burdanova M. G.2,3
1ITMO University, St. Petersburg, Russia
2Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia
3Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
4Skolkovo Institute of Science and Technology, Moscow, Russia
5Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: radivon.av@phystech.su

PDF
The results of a study of the performance of an orbital angular momentum modulator in the submillimeter range (340 GHz) based on thin films of single-walled carbon nanotubes are presented. Spiral zone wafers have been created to characterize the spatial modulation of the Gaussian beam using a state-of-the-art technique for synthesizing and depositing nanostructures of different thicknesses on the substrate. Using a combination of spiral zone plates allows the energy in the terahertz beam to be redistributed across the different generated optical vortices. The fabricated diffractive elements have tunable characteristics such as redistributable orbitally angular momentum and charge number. The obtained orbital angular momentum generators can be integrated into next-generation communication systems. Keywords: carbon nanotubes, spatial modulation of terahertz radiation, tunable optical element, spiral zone plate, optical vortex.
  1. O.A. Smolyanskaya, N.V. Chernomyrdin, A.A. Konovko, K.I. Zaytsev, I.A. Ozheredov, O.P. Cherkasova, M.M. Nazarov, J.-P. Guillet, S.A. Kozlov, Yu.V. Kistenev, J.-L. Coutaz, P. Mounaix, V.L. Vaks, J.-H. Son, H. Cheon, V.P. Wallace, Yu. Feldman, I. Popov, A.N. Yaroslavsky, A.P. Shkurinov, V.V. Tuchin. Progress in Quantum Electronics, 62, 1 (2018). DOI: 10.1016/j.pquantelec.2018.10.001
  2. R. Kersting, H.-T. Chen, N. Karpowicz, G.C. Cho. Journal of Optics A Pure and Applied Optics, 7 (2), 184 (2005). DOI: 10.1088/1464-4258/7/2/024
  3. A. Shafie, N. Yang, C. Han, J.M. Jornet, M. Juntti, T. Kurner. IEEE Network, 37 (3), 162 (2023). DOI: 10.1109/MNET.118.2200057
  4. M. Laikin. Lens Design. Optical Science and Engineering, 4th edition. (CRC Press, Boca Raton, FL, 2006)
  5. N.V. Petrov, B. Sokolenko, M.S. Kulya, A. Gorodetsky, A.V. Chernykh. Light: Advanced Manufacturing, 3 (1), 640 (2022). DOI: 10.37188/lam. 2022.043
  6. A.E. Willner, K. Pang, H. Song, K. Zou, H. Zhou. Applied Physics Reviews, 8 (4), 041312 (2021). DOI: 10.1063/5.0054885
  7. H. Moser, C. Rockstuhl. Laser and Photonics Reviews, 6, 219 (2012). DOI: 10.1002/lpor.201000019
  8. M.G. Burdanova, G.M. Katyba, R. Kashtiban, G.A. Komandin, E. Butler-Caddle, M. Staniforth, A.A. Mkrtchyan, D.V. Krasnikov, Yu.G. Gladush, J. Sloan, A.G. Nasibulin, J. Lloyd-Hughes. Carbon, 173, 245 (2021). DOI: 10.1016/j.carbon.2020.11.008
  9. D.S. Kopylova, D. Satko, E.M. Khabushev, A.V. Bubis, D.V. Krasnikov, T.M. Kallio, A.G. Nasibulin. Carbon, 167, 244 (2020). DOI: 10.1016/j.carbon.2020.05.103
  10. D.A. Ilatovskii, E.P. Gilshtein, O.E. Glukhova, A.G. Nasibulin. Advanced Science, 9 (24), 2201673 (2022). DOI: 10.1002/advs.202201673
  11. D.V. Krasnikov, B.Y. Zabelich, V.Y. Iakovlev, A.P. Tsapenko, S.A. Romanov, A.A. Alekseeva, A.K. Grebenko, A.G. Nasibulin. Chemical Engineering Journal, 372, 462 (2019). DOI: 10.1016/j.cej.2019.04.173
  12. R.R. Hartmann, J. Kono, M.E. Portnoi. Nanotechnology, 25, 322001 (2014). DOI: 10.1088/0957-4484/25/32/32200
  13. M. Jin, Y. Wang, M. Chai, C. Chen, Z. Zhao, T. He. Advanced Functional Materials, 32 (11), 2107499 (2021). DOI: 10.1002/adfm.202107499
  14. G.M. Katyba, N.I. Raginov, E.M. Khabushev, V.A. Zhelnov, A. Gorodetsky, D.A. Ghazaryan, M.S. Mironov, D.V. Krasnikov, Yu.G. Gladush, J. Lloyd-Hughes, A.G. Nasibulin, A.V. Arsenin, V. Volkov, K.I. Zaytsev, M.G. Burdanova. Optica, 10, 53 (2023). DOI: 10.1364/optica.475385
  15. I.V. Novikov, N.I. Raginov, D.V. Krasnikov, S.S. Zhukov, K.V. Zhivetev, A.V. Terentiev, D.A. Ilatovskii, A. Elakshar, E.M. Khabushev, A.K. Grebenko, S.A. Kuznetsov, S.D. Shandakov, B.P. Gorshunov, A.G. Nasibulin. Chemical Engineering Journal, 485, 149733 (2024). DOI: 10.1016/j.cej.2024.149733
  16. M.I. Paukov, V.V. Starchenko, D.V. Krasnikov, G.A. Komandin, Yu.G. Gladush, S.S. Zhukov, B.P. Gorshunov, A.G. Nasibulin, A.V. Arsenin, V. Volkov. Ultrafast Science, 3, 0021 (2023). DOI: 10.34133/ultrafastscience.0021
  17. M.G. Burdanova, A.P. Tsapenko, D.A. Satco, R. Kashtiban, C.D.W. Mosley, M. Monti, M. Staniforth, J. Sloan, Yu.G. Gladush, A.G. Nasibulin, J. Lloyd-Hughes. ACS Photonics, 6 (4), 1058 (2019). DOI: 10.1021/acsphotonics.9b00138
  18. B. Arash, Q. Wang. Scientific Reports, 3, 1782 (2013). DOI: 10.1038/srep01782
  19. E.M. Khabushev, D.V. Krasnikov, O.T. Zaremba, A.P. Tsapenko, A.E. Goldt. The Journal of Physical Chemistry Letters, 10, 6962 (2019). DOI: 10.1021/acs. jpclett.9b02777
  20. A. Kaskela, A.G. Nasibulin, M.Y. Timmermans, B. Aitchinson, A. Papadimitratos, Y. Tian, Z. Zhu, H. Jiang, D.P. Brown, A. Zakhidov, E.I. Kauppinen. Nano Letters, 10, 4349 (2010). DOI: 10.1021/nl101680s
  21. N.V. Chernomyrdin, A.O. Schadko, S.P. Lebedev, V.L. Tolstoguzov, V.N. Kurlov, I.V. Reshetov, I.E. Spektor, M. Skorobogatiy, S.O. Yurchenko, K.I. Zaitsev. Applied Physics Letters, 110, DOI: 10.1063/1.4984952
  22. G.M. Katyba, K.V. Zaytsev, N.V. Chernomyrdin, I.A. Shikunova, G.A. Komandin, V.B. Anzin, S.P. Lebedev, I.E. Spektor, V.E. Karasik, S.O. Yurchenko, I.V. Reshetov, V.N. Kurlov, M. Skorobogatiy. Advanced Optical Materials, 6, 1800573 (2018). DOI: 10.1002/adom.201800573
  23. K.I. Zaytsev, G.M. Katyba, N.V. Chernomyrdin, I.N. Dolganova, A.S. Kucheryavenko, A.N. Rossolenko, V.V. Tuchin, V.N. Kurlov, M. Skorobogatiy. Advanced Optical Materials, 8, 2000307 (2020). DOI: 10.1002/adom.202000307
  24. X. Guofu, M. Skorobogatiy. Journal of Infrared, Millimeter, and Terahertz Waves, 43, 728 (2022). DOI: 10.1007/s10762-022-00879-x

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru