Generation of terahertz radiation by multiple pseudomorphic quantum wells \InGaAs/InAlAs\ with orientations (100) and (111)A
Klimov E. A.1,2, Pushkarev S. S.1, Klochkov N. N.3, Kovaleva P. M.4, Kuznetsov K. A.4
1National Research Center “Kurchatov Institute”, Moscow, Russia
2Orion R&P Association, JSC, Moscow, Russia
3National Research Nuclear University “MEPhI”, Moscow, Russia
4Department of Physics, Lomonosov Moscow State University, Moscow, Russia
Email: s_s_e_r_p@mail.ru

PDF
The influence of the built-in electric field in heterostructures on the generation of terahertz (THz) radiation under femtosecond laser pumping of the heterostructure surfaces has been investigated. The heterostructures consist of elastically strained superlattices of In0.53+Δ xGa0.47-Δ xAs/In0.52-Δ xAl0.48+Δ xAs, epitaxially grown on InP substrates with (100) and (111)A orientations. The value of Δ x, and hence the value of strain, varied in series of samples. The "red" shift of the peak in the photoluminescence spectra confirms the presence of an integrated electric field in (111)A-heterostructures caused by the piezoelectric effect. It is shown that (100)-heterostructures generate a THz signal of approximately the same level (the scatter of THz field amplitude values is no more than 30% of the average value) regardless of strain, while in a series of (111)A-heterostructures the THz signal significantly increases (by 75-90%) for highly strained samples. Keywords: molecular beam epitaxy, GaAs, InGaAs, piezoelectric effect, terahertz emission, femtosecond laser.
  1. D. C\^ote, N. Laman, H.M. van Driel. Appl. Phys. Lett., 80 (6), 905 (2002). DOI: 10.1063/1.1436530
  2. D. Cote, N. Laman, H.M. van Driel. Appl. Phys. Lett., 80, 905 (2002)
  3. A. Krotkus. J. Phys. D: Appl. Phys., 43, 273001 (2010). DOI: 10.1088/0022-3727/43/27/273001
  4. B. Globisch, R.J.B. Dietz, R.B. Kohlhaas, T. Gobel, M. Schell, D. Alcer, M. Semtsiv, W.T. Masselink. J. Appl. Phys., 121, 053102 (2017). DOI: 10.1063/1.4975039
  5. MenloSystems [Electronic source]. URL: https:// www.menlosystems.com/products/thz-time-domain-solutions/ tera15-fc-3/ (date of access: 20.11.2024)
  6. Nathan M. Burford, Magda O. El-Shenawee. Opt. Eng., 56 (1), 010901 (2017). DOI: 10.1117/1.OE.56.1.010901
  7. R.J. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, M. Schell. Opt. Express, 19 (27), 25911 (2011). DOI: 10.1364/OE.19.025911
  8. A.E. Yachmenev, D.V. Lavrukhin, R.A. Khabibullin, Yu.G. Goncharov, I.E. Spector, K.I. Zaitsev, V.A. Solovyov, S.V. Ivanov, D.S. Ponomarev. Opt. i spektr., 129 (6), 741 (2021) (in Russian). DOI: 10.21883/OS.2021.06.50985.4-21
  9. D.V. Lavrukhin, A.E. Yachmenev, Y.G. Goncharov, K.I. Zaytsev, R.A. Khabibullin, A.M. Buryakov, E.D. Mishina, D.S. Ponomarev. IEEE Transactions on Terahertz Science and Technology, 11 (4), 417 (2021). DOI: 10.1109/TTHZ.2021.3079977
  10. V.L. Malevich. J. Appl. Phys., 112, 073115 (2012)
  11. A.Y. Shik. Superlattice // The Great Russian Encyclopedia: a scientific and educational portal. URL: https://bigenc.ru/c/sverkhreshiotka-a2f3e5/?v=5490666. Date of publication: 10.11.2022
  12. P.O. Vaccaro, M. Takahashi, K. Fujita, T. Watanabe. J. Appl. Phys., 76, 8037 (1994). DOI: 10.1063/1.357923
  13. E.A. Khoo, J.P.R. David, J. Woodhead, R. Grey, G.J. Rees. Appl. Phys. Lett., 75, 1929 (1999). DOI: 10.1063/1.124874
  14. A. Chin, K. Lee. Appl. Phys. Lett., 68, 3437 (1996). DOI: 10.1063/1.115785
  15. S. Adachi. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (John Wiley \& Sons Ltd., United Kingdom, 2009)
  16. G.B. Galiev, M.M. Grekhov, G.H. Kitaeva, E.A. Klimov, A.N. Klochkov, O.S. Kolentsova, V.V. Kornienko, K.A. Kuznetsov, P.P. Maltsev, S.S. Pushkarev. FTP, 51 (3), 322 (2017) (in Russian). DOI: 10.21883/FTP.2017.03.44201.8312
  17. S. Hargreaves, K. Radhanpura, R.A. Lewis. Phys. Rev. B, 80 (19), 195323 (2009)
  18. A. Krotkus. J. of Phys. D: Appl. Phys., 43 (27), 273001 (2010)
  19. M. Reid, I. V. Cravetchi, R. Fedosejevs // Phys. Rev. B, 72, 035201 (2005)
  20. I. Beleckaite, R. Adomaviv cius, R. Butkute, V. Pav cebutas, G. Molis, V. Bukauskas, A. Selskis, A. Krotkus. Electron. Lett., 52, 1954 (2016). DOI: 10.1049/el.2016.2517
  21. P. Cicenas, A. Geiv zutis, V.L. Malevich, A. Krotkus. Opt. Lett., 40 (22), 5164 (2015). DOI: 10.1364/OL.40.005164
  22. I. Nevinskas, K. Vizbaras, A. Trinkunas, R. Butkute, A. Krotkus. Opt. Lett., 42 (13), 2615 (2017). DOI: 10.1364/OL.42.002615
  23. G.B. Galiev, S.S. Pushkarev, A.M. Buryakov, V.R. Bilyk, E.D. Mishina, E.A. Klimova, I.S. Vasilevsky, P.P. Maltsev. FTP, 51 (4), 529 (2017) (in Russian). DOI: 10.21883/FTP.2017.04.44347.8408

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru