Mathematical modeling of interactions of the surface of carbon dots with metal ions using the method of molecular dynamics
Kozhushnyy K.A. 1, Vervald A.M. 1, Dolenko T.A.1
1Lomonosov Moscow State University, Moscow, Russia
Email: psn.kozhu@yandex.ru
The interactions of a number of metal cations Co2+, Cu2+, Mg2+, Ni2+, Pb2+, Zn2+, Al3+, Cr3+, Fe3+ with the carboxylated surface of a carbon dot in water have been studied by the method of molecular dynamics. The analysis of the obtained time dependencies of the distances between cations and the carboxyl group showed the absence of ion adsorption on the surface of the carbon dot and their predominant interaction through a layer of water molecules. The results indicate that the quenching of photoluminescence of carbon dots by cations of the studied metals is dynamic. Keywords: carbon dots, photoluminescence, molecular dynamics, photoluminescence quenching, adsorption.
- N. Baig, I. Kammakakam, W. Falath. Mater. Adv., 2 (6), 1821 (2021). DOI: 10.1039/d0ma00807a
- F. Choudhary, P. Mudgal, A. Parvez, P. Sharma, H. Farooq. Nano-Structures \& Nano-Objects, 38, 101186 (2024). DOI: 10.1016/j.nanoso.2024.101186
- S. Nasir, M. Hussein, Z. Zainal, N. Yusof. Materials, 11 (2), 295 (2018). DOI: 10.3390/ma11020295
- D. Ozyurt, M.A. Kobaisi, R.K. Hocking, B. Fox. Carbon Trends, 12, 100276 (2023). DOI: 10.1016/j.cartre.2023.100276
- M.Yu. Khmeleva, K.A. Laptinskiy, T.A. Dolenko. Opt. Spectrosc., 131 (6), 752 (2023). DOI: 10.61011/EOS.2023.06.56662.104-23
- A.A. Korepanova, K.A. Laptinskiy, T.A. Dolenko. Opt. Spectrosc., 132 (3), 223 (2024). DOI: 10.61011/EOS.2025.02.61028.7343-24
- A.O. Adeola, A. Clermont-Paquette, A. Piekny, R. Naccache. Nanotechnology, 35, 012001 (2023). DOI: 10.1088/1361-6528/acfdaf
- J. Luo, Z. Sun, W. Zhou, F. Mo, Z. Wu, X. Zhang. Opt. Mat., 113, 110796 (2021). DOI: 10.1016/j.optmat.2020.110796
- H. Lee, Y.-C. Su, H.-H. Tang, Y.-S. Lee, J.-Y. Lee, C.-C. Hu, T.-C. Chiu. Nanomaterials, 11 (7) ,1831 (2021). DOI: 10.3390/nano11071831
- O.E. Sarmanova, K.A. Laptinskiy, M.Yu. Khmeleva, S.A. Burikov, S.A. Dolenko, A.E. Tomskaya, T.A. Dolenko. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 258, 119861 (2021). DOI: 10.1016/j.saa.2021.119861
- G.N. Chugreeva, O.E. Sarmanova, K.A. Laptinskiy, S.A. Burikov, T.A. Dolenko. Optical Memory and Neural Networks (Information Optics), 32 (S2), S244 (2023). DOI: 10.3103/S1060992X23060036
- Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao. J. Chen. Chemistry --- A European J., 20 (8), 2254 (2014). DOI: 10.1002/chem.201304374
- C. Li, W. Liu, Y. Ren, X. Sun, W. Pan, J. Wang. Sensors and Actuators B: Chemical, 240, 941 (2017). DOI: 10.1016/j.snb.2016.09.068
- A.M. Vervald, K.A. Laptinskiy, G.N. Chugreeva, S.A. Burikov, T.A. Dolenko. J. Phys. Chem. C., 127 (44), 21617 (2023). DOI: 10.1021/acs.jpcc.3c05231
- Y. Sun, X. Wang, C. Wang, D. Tong, Q. Wu, K. Jiang, Y. Jiang, C. Wang, M. Yang. Microchimica Acta, 185 (1), (2018). DOI: 10.1007/s00604-017-2544-1
- Y. Hao, Z. Gan, X. Zhu, T. Li, X. Wu, P.K. Chu. J. Phys. Chem. C, 119 (6), 2956 (2015). DOI: 10.1021/jp5114569
- S. Dutta Choudhury, J.M. Chethodil, P.M. Gharat, P.P.K., H. Pal. J. Phys. Chem. Lett., 8 (7), 1389 (2017). DOI: 10.1021/acs.jpclett.7b00153
- J. Lakowicz, Osnovy fluorestsentnoy spectroscopy (Mir, M.,1986) (in Russian)
- Engineering ToolBox. Phenols, alcohols and carboxylic acids --- pKa values. https://www.engineeringtoolbox.com/paraffinic-benzoic-hydroxy-dioicacids-structure-pka-carboxylic-dissociation-constant-alcohol-phenold_1948.html
- M. Paloncyova, M. Langer, M. Otyepka. J. Chem. Theory Comput., 14, 2076 (2018). DOI: 10.1021/acs.jctc.7b01149
- M. Langer, M. Paloncyova, M. Medved', M. Otyepka. J. Phys. Chem., 11, 8252 (2020). DOI: 10.1021/acs.jpclett.0c01873
- W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives. J. Am. Chem. Soc., 118, 11225 (1996). DOI: 10.1021/ja9621760
- G. Yao, J. Zhao, M.A. Haruna, D. Wen. RSC Adv., 11, 26037 (2021). DOI: 10.1039/D1RA03935K
- M. Paloncyova, M. Langer, M. Otyepka. J. Chem. Theory Comput., 14, 2076 (2018). DOI: 10.1021/acs.jctc.7b01149
- F. Saberi-Movahed, D.W. Brenner. DOI:10.48550/arXiv.2103.01385
- M. Langer, M. Paloncyova, M. Medvef', M. Pykal, D. Nachtigallova, B. Shi, A.J.A. Aquino, H. Lischka, M. Otyepka. Appl. Materials Today, 22, 100924 (2021). DOI: 10.1016/j.apmt.2020.100924
- S. Plimpton. J. Comp. Phys., 117, 1-19 (1995). DOI: 10.1006/jcph.1995.1039
- LigParGen server, https://traken.chem.yale.edu/ligpargen/
- S. Chatterjee, P.G. Debenedetti, F.H. Stillinger, R.M. Lynden-Bell. J. Chem. Phys., 128 (12), 124511 (2008). DOI: 10.1063/1.2841127
- Y. Umebayashi, W.-L. Chung, T. Mitsugi, S. Fukuda, M. Takeuchi, K. Fujii, T. Takamuku, R. Kanzaki, S. Ishiguro. J. Comp. Chem. Japan, 7 (4), 125 (2008). DOI: 10.2477/jccj.h2013
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.