Mathematical modeling of interactions of the surface of carbon dots with metal ions using the method of molecular dynamics
Kozhushnyy K.A. 1, Vervald A.M. 1, Dolenko T.A.1
1Lomonosov Moscow State University, Moscow, Russia
Email: psn.kozhu@yandex.ru

PDF
The interactions of a number of metal cations Co2+, Cu2+, Mg2+, Ni2+, Pb2+, Zn2+, Al3+, Cr3+, Fe3+ with the carboxylated surface of a carbon dot in water have been studied by the method of molecular dynamics. The analysis of the obtained time dependencies of the distances between cations and the carboxyl group showed the absence of ion adsorption on the surface of the carbon dot and their predominant interaction through a layer of water molecules. The results indicate that the quenching of photoluminescence of carbon dots by cations of the studied metals is dynamic. Keywords: carbon dots, photoluminescence, molecular dynamics, photoluminescence quenching, adsorption.
  1. N. Baig, I. Kammakakam, W. Falath. Mater. Adv., 2 (6), 1821 (2021). DOI: 10.1039/d0ma00807a
  2. F. Choudhary, P. Mudgal, A. Parvez, P. Sharma, H. Farooq. Nano-Structures \& Nano-Objects, 38, 101186 (2024). DOI: 10.1016/j.nanoso.2024.101186
  3. S. Nasir, M. Hussein, Z. Zainal, N. Yusof. Materials, 11 (2), 295 (2018). DOI: 10.3390/ma11020295
  4. D. Ozyurt, M.A. Kobaisi, R.K. Hocking, B. Fox. Carbon Trends, 12, 100276 (2023). DOI: 10.1016/j.cartre.2023.100276
  5. M.Yu. Khmeleva, K.A. Laptinskiy, T.A. Dolenko. Opt. Spectrosc., 131 (6), 752 (2023). DOI: 10.61011/EOS.2023.06.56662.104-23
  6. A.A. Korepanova, K.A. Laptinskiy, T.A. Dolenko. Opt. Spectrosc., 132 (3), 223 (2024). DOI: 10.61011/EOS.2025.02.61028.7343-24
  7. A.O. Adeola, A. Clermont-Paquette, A. Piekny, R. Naccache. Nanotechnology, 35, 012001 (2023). DOI: 10.1088/1361-6528/acfdaf
  8. J. Luo, Z. Sun, W. Zhou, F. Mo, Z. Wu, X. Zhang. Opt. Mat., 113, 110796 (2021). DOI: 10.1016/j.optmat.2020.110796
  9. H. Lee, Y.-C. Su, H.-H. Tang, Y.-S. Lee, J.-Y. Lee, C.-C. Hu, T.-C. Chiu. Nanomaterials, 11 (7) ,1831 (2021). DOI: 10.3390/nano11071831
  10. O.E. Sarmanova, K.A. Laptinskiy, M.Yu. Khmeleva, S.A. Burikov, S.A. Dolenko, A.E. Tomskaya, T.A. Dolenko. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 258, 119861 (2021). DOI: 10.1016/j.saa.2021.119861
  11. G.N. Chugreeva, O.E. Sarmanova, K.A. Laptinskiy, S.A. Burikov, T.A. Dolenko. Optical Memory and Neural Networks (Information Optics), 32 (S2), S244 (2023). DOI: 10.3103/S1060992X23060036
  12. Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao. J. Chen. Chemistry --- A European J., 20 (8), 2254 (2014). DOI: 10.1002/chem.201304374
  13. C. Li, W. Liu, Y. Ren, X. Sun, W. Pan, J. Wang. Sensors and Actuators B: Chemical, 240, 941 (2017). DOI: 10.1016/j.snb.2016.09.068
  14. A.M. Vervald, K.A. Laptinskiy, G.N. Chugreeva, S.A. Burikov, T.A. Dolenko. J. Phys. Chem. C., 127 (44), 21617 (2023). DOI: 10.1021/acs.jpcc.3c05231
  15. Y. Sun, X. Wang, C. Wang, D. Tong, Q. Wu, K. Jiang, Y. Jiang, C. Wang, M. Yang. Microchimica Acta, 185 (1), (2018). DOI: 10.1007/s00604-017-2544-1
  16. Y. Hao, Z. Gan, X. Zhu, T. Li, X. Wu, P.K. Chu. J. Phys. Chem. C, 119 (6), 2956 (2015). DOI: 10.1021/jp5114569
  17. S. Dutta Choudhury, J.M. Chethodil, P.M. Gharat, P.P.K., H. Pal. J. Phys. Chem. Lett., 8 (7), 1389 (2017). DOI: 10.1021/acs.jpclett.7b00153
  18. J. Lakowicz, Osnovy fluorestsentnoy spectroscopy (Mir, M.,1986) (in Russian)
  19. Engineering ToolBox. Phenols, alcohols and carboxylic acids --- pKa values. https://www.engineeringtoolbox.com/paraffinic-benzoic-hydroxy-dioicacids-structure-pka-carboxylic-dissociation-constant-alcohol-phenold_1948.html
  20. M. Paloncyova, M. Langer, M. Otyepka. J. Chem. Theory Comput., 14, 2076 (2018). DOI: 10.1021/acs.jctc.7b01149
  21. M. Langer, M. Paloncyova, M. Medved', M. Otyepka. J. Phys. Chem., 11, 8252 (2020). DOI: 10.1021/acs.jpclett.0c01873
  22. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives. J. Am. Chem. Soc., 118, 11225 (1996). DOI: 10.1021/ja9621760
  23. G. Yao, J. Zhao, M.A. Haruna, D. Wen. RSC Adv., 11, 26037 (2021). DOI: 10.1039/D1RA03935K
  24. M. Paloncyova, M. Langer, M. Otyepka. J. Chem. Theory Comput., 14, 2076 (2018). DOI: 10.1021/acs.jctc.7b01149
  25. F. Saberi-Movahed, D.W. Brenner. DOI:10.48550/arXiv.2103.01385
  26. M. Langer, M. Paloncyova, M. Medvef', M. Pykal, D. Nachtigallova, B. Shi, A.J.A. Aquino, H. Lischka, M. Otyepka. Appl. Materials Today, 22, 100924 (2021). DOI: 10.1016/j.apmt.2020.100924
  27. S. Plimpton. J. Comp. Phys., 117, 1-19 (1995). DOI: 10.1006/jcph.1995.1039
  28. LigParGen server, https://traken.chem.yale.edu/ligpargen/
  29. S. Chatterjee, P.G. Debenedetti, F.H. Stillinger, R.M. Lynden-Bell. J. Chem. Phys., 128 (12), 124511 (2008). DOI: 10.1063/1.2841127
  30. Y. Umebayashi, W.-L. Chung, T. Mitsugi, S. Fukuda, M. Takeuchi, K. Fujii, T. Takamuku, R. Kanzaki, S. Ishiguro. J. Comp. Chem. Japan, 7 (4), 125 (2008). DOI: 10.2477/jccj.h2013

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru