Physics of the Solid State
Volumes and Issues
Effect of submicron Ti-Ni-Ta-based surface alloy on the mechanical properties of the TiNi alloy before and after thermal cycling of the system [Ti-Ni-Ta-based surface alloy|TiNi-substrate]
D'yachenko F. A. 1, Chepelev D.1, Loban' V. V.1, Meisner L. L. 1
1Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
Email: dfa@ispms.ru, danchep@ispms.ru, slavalob357@gmail.com, llm@ispms.ru

PDF
The dependencies of changes in the mechanical properties of the TiNi alloy with synthesized surface alloy based on the Ti-Ni-Ta system with a thickness of <1 μm were investigated in torsion tests. The synthesis was carried out by alternating the operations of deposition of a Ti60Ta40 (at.%) alloying film and liquid-phase mixing of the film/substrate system using a low-energy high-current electron-beam. It has been shown that the presence of the surface alloy results in the preservation of martensite shear stresses tauM~460 MPa, an increase in the width of the stress hysteresis loop Δtau by ~25 MPa, and an improvement in the ability of the material to accumulate and recover superelastic strain γSE by ~0.2 % more than the values in TiNi samples without irradiation and alloying. It was found that reducing of the thickness of the surface alloy does not lead to an increase in the crack resistance of the synthesized surface layer. It was found that thermal cycling of the modified samples in the temperature range of B2-B19' martensitic transformation leads to a change in the elastic-stress state in the [surface alloy|TiNi-substrate] system, resulting in a reduction of stresses tauM by ~100 MPa, and an increase in the crack resistance of the synthesized surface layer. Keywords: electron-beam synthesis, torsion tests, martensitic transformations, surface morphology.
  1. W. Abd-Elaziem, M.A. Darwish, A. Hamada, W.M. Daoush. Mater. Des. 241, 112850 (2024). https://doi.org/10.1016/j.matdes.2024.112850
  2. R. Sarvari, P. Keyhanvar, S. Agbolaghi, M.S. Gholami Farashah, A. Sadrhaghighi, M. Nouri, L. Roshangar. Int. J. Polym. Mater. Polym. Biomater. 71, 5, 315 (2020). https://doi.org/10.1080/00914037.2020.1833010
  3. N. Sabahi, W. Chen, C.-H. Wang, J.J. Kruzic, X. Li. JOM 72, 3, 1229 (2020). https://doi.org/10.1007/s11837-020-04013-x
  4. J. Zhu, Q. Zeng, T. Fu. Corros. Rev. 37, 6, 539 (2019). https://doi.org/10.1515/corrrev-2018-0104
  5. U. Roshan, R. Amarasinghe, N. Dayananda. J. Rob. Networking Artif. Life 5, 3, 194 (2018)
  6. J.M. Jani, M. Leary, A. Subic, M.A. Gibson. Mater. Des. 56, 1078 (2014). https://doi.org/10.1016/j.matdes.2013.11.084
  7. R. Braga, P. Freitas Rodrigues, H. Cordeiro, P. Carreira, M.T. Vieira. Mater. 15, 14, 4787 (2022). https://doi.org/10.3390/ma15144787
  8. M. Mehrpouya, H. Cheraghi Bidsorkhi. Micro Nanosyst. 8, 2, 79 (2016). https://doi.org/10.2174/1876402908666161102151453
  9. A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, S. Viscuso. Sens. Actuators A 158, 1, 149 (2010). https://doi.org/10.1016/j.sna.2009.12.020
  10. V.S. Kalashnikov, V.V. Koledov, V.G. Shavrov, V.A. Andreev, A.V. Nesolenov, D.S. Kuchin, R.D. Karelin. J. Commun. Technol. Electron. 68, 4, 400 (2023). https://doi.org/10.1134/S1064226923040046
  11. F. Sun, L. Jordan, V. Albin, V. Lair, A. Ringuede, F. Prima. ACS Omega 5, 6, 3073 (2020). https://doi.org/10.1021/acsomega.9b04312
  12. E.Yu. Gudimova, L.L. Meisner, S.N. Meisner, O.I. Shabalina, A.A. Boshchenko, A.E. Baev, S.I. Vintizenko. Tech. Phys. 65, 4, 645 (2020). https://doi.org/10.1134/S1063784220040088 Patent N 13(2017137653/15) RF, MPK A61L 065731, B82B 27/06, C22C 1/00, A61L 45/10, C22C 31/18, C23C 45/04. Sposob sinteza rengenokontrastnogo poverkhnostnogo Ti-Ta-Ni splava s amorphnoj ili amorfo-nanokristallicheskoj strukturoj na podlozhke iz TiNi splava. L.L. Meisner, A.B. Markov, G.E. Ozur, V.P. Rotshtein, S.N. Meisner, E.V. Yakovlev, E.Yu. Gudimova, V.O. Semin, Patentoobladatel' IFPM SO RAN, ISE SO RAN. Publ. 11.04.18. (in Russian)
  13. F.A. D'yachenko, V.O. Semin, M.G. Ostapenko, L.L. Meisner. Phys. Solid State 65, 4, 593 (2023). https://doi.org/10.21883/PSS.2023.04.56000.24
  14. F.A. D'yachenko, V.V. Loban', V.O. Semin, D.V. Chepelev, M.G. Ostapenko, L.L. Meisner. Phys. Solid State 66, 1193 (2024)
  15. M.G. Ostapenko, V.O. Semin, L.L. Meisner, F.A. D'yachenko, S.N. Meisner, E.M. Oks, K.P. Savkin, A.B. Markov, E.V. Yakovlev, S.I. Yuzhakova, D.V. Chepelev, V.V. Loban'. Russ. Phys. J. 66, 5, 503 (2023). https://doi.org/10.1007/s11182-023-02968-3
  16. F.A. D'yachenko, D.V. Chepelev, L.L. Meisner. Springer Proceed. Phys. 412, 55 (2024). https://doi.org/10.1007/978-981-97-1872-6_9
  17. L.L. Meisner, V.P. Rotshtein, V.O. Semin, A.B. Markov, E.V. Yakovlev, S.N. Meisner, D.A. Shepel, A.A. Neiman, E.Yu. Gudimova, F.A. D'yachenko, R.R. Mukhamedova. Mater. Charact. 166, 110455 (2020). https://doi.org/10.1016/j.matchar.2020.110455
  18. F.A. D'yachenko, V.O. Semin, A.R. Shugurov, M.G. Ostapenko, L.L. Meisner. Surf. Coat. Technol. 474, 130123 (2023). https://doi.org/10.1016/j.surfcoat.2023.130123
  19. F.A. D'yachenko, V.O. Semin, M.G. Ostapenko, L.L. Meisner, A.B. Markov, E.V. Yakovlev. Russ. Phys. J. 66, 12, 1287 (2024). https://doi.org/10.1007/s11182-023-03074-0
  20. C.-W. Chi, Y.-L. Deng, J.-W. Lee, C.-P. Lin. J. Formosan Med. Associat. 116, 5, 373 (2017). https://doi.org/10.1016/j.jfma.2016.07.003
  21. H. Jia, F. Liu, Z. An, W. Li, G. Wang, J.P. Chu, J.S.C. Jang, Y. Gao, P.K. Liaw. Thin Solid Films 561, 2 (2014). https://doi.org/10.1016/j.tsf.2013.12.024
  22. C.M. Lee, J.P. Chu, W.Z. Chang, J.W. Lee, J.S.C. Jang, P.K. Liaw. Thin Solid Films 561, 33 (2014). https://doi.org/10.1016/j.tsf.2013.08.027
  23. H. Tobushi, A. Ikai, S. Yamada, K. Tanaka, C. Lexcellent. J. Physique IV France 06, C1, 385 (1996). https://doi.org/10.1051/jp4:1996137
  24. S.P. Belyaev, N.N. Resnina, K.O. Anshukova. Tech. Phys. Lett. 39, 3, 284 (2013)
  25. A.A. Tchurakova, D.V. Gunderov, A.V. Lukyanov, Yu.A. Lebedev. Lett. Mater. 3, 2, 166 (2013). https://doi.org/10.22226/2410-3535-2013-2-166-168
  26. H. Tobushi, K. Date, K. Miyamoto. J. Solid Mech. Mater. Eng. 4, 7, 1094 (2010). https://doi.org/10.1299/jmmp.4.1094
  27. G.E. Ozur, D.I. Proskurovsky. Plasma Phys. Rep. 44, 1, 18 (2018). https://doi.org/10.1134/S1063780X18010130
  28. A.B. Markov, A.V. Mikov, G.E. Ozur, A.G. Padei. Instrum. Exp. Tech. 54, 6, 862 (2011). https://doi.org/10.1134/S0020441211050149
  29. GOST 3565--80 Metally. Metod ispytaniya na kruchenie. Izd-vo standartov (1980) 17 s. (in Russian)
  30. A. Bhaduri. Mechanical Properties and Working of Metals and Alloys. Springer Singapore, Singapore. (2018), 748 p. https://doi.org/10.1007/978-981-10-7209-3

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru