Physics of the Solid State
Volumes and Issues
The effect of sol-gel-synthesis temperature on the structure and magnetic properties of Sr-substituted La0.5Sr0.5FeO3-γ
Sedykh V. D.1, Rybchenko O. G.1, Rusakov V. S.2, Gapochka A. M.2, Dmitriev A. I.3, Pershina E. A.1, Zaitsev S. V.1, Meletov K. P.1, Kulakov V. I.1, Ivanov A. I.1
1Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
2Lomonosov Moscow State University, Moscow, Russia
3Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Сhernogolovka, Russia
Email: sedykh@issp.ac.ru, orybch@issp.ac.ru, rusakovvs@mail.ru, al-gap@physics.msu.ru, alex-dmitriev2005@yandex.ru, pershina@issp.ac.ru, szaitsev@issp.ac.ru, mele@issp.ac.ru, kulakov@issp.ac.ru, aliv@issp.ac.ru

PDF
The effect of temperature used at the final stage of sol-gel synthesis method on the structure, Fe valence states, and Neel temperature of Sr-substituted La0.5Sr0.5FeO3-γ has been studied using transmission electron microscopy, X-ray diffraction, Mossbauer and Raman spectroscopy, as well magnetic measurements. The samples were synthesized by sol-gel method in air at the temperatures of 1100 and 1300oC and then annealed in the vacuum in the temperature range of 200-650oC to deoxygenize and deoxidate Fe. Oxygen yield and transition from Fe4+ to Fe3+ under vacuum annealing have been found out to occur slower in the samples synthesized at higher temperature. Therefore the transformation of the initial rhombohedral phase to the cubic one finishes at the higher annealing temperature. This is explained by the difference in the sizes of the initial crystals formed at different synthesis temperatures. After long final annealing at 650oC, the samples become single-phase with a cubic structure in both cases. It is confirmed by the results of Mossbauer and Raman spectroscopy as well magnetic measurements. The Neel temperatures have been determined for all samples under study. The results obtained by all used methods correlate well between themselves. Keywords: orthoferrites, Fe valence states, oxygen vacancies.
  1. S. Petrovic, A. Terlecki, L. Karanovic, P. Kirilov-Stefanov, M. Zduji, V. Dondur, D. Paneva, I. Mitov, V. Rakic. Appl. Catal. B. Environ. 79, 186 (2008). https://doi.org/10.1016/J.APCATB.2007.10.022
  2. J. Faye, A. Bayleta, M. Trentesauxb, S. Royera, F. Dumeignil, D. Duprez, S. Valange. Appl. Catal. B Environ. 126, 134 (2012). https://doi.org/10.1016/J.APCATB.2012.07.001
  3. E.K. Abdel-Khalek, D.A. Rayan, Ahmed.A. Askar, M.I.A. Abdel Maksoud, H.H. El-Bahnasawy. J. Sol-Gel Sci. Technol. 97, 27 (2021). https://doi.org/10.1007/s10971-020-05431-8
  4. J.B. Yang, W.B. Yelon, W.J. James, Z. Chu, M. Kornecki, Y.X. Xie, X.D. Zhou, H.U. Anderson, Amish G. Joshi, S.K. Malik. Phys. Rev. B 66, 184415 (2002). https://doi.org/10.1103/PhysRevB.66.184415
  5. M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 178 (2012). https://doi.org/10.1063/1.4759488
  6. V. Sedykh, V. Rusakov, O. Rybchenko, A. Gapochka, K. Gavrilicheva, O. Barkalov, S. Zaitsev, V. Kulakov. Ceram. Int. 49, 15, 25640 (2023). https://doi.org/10.1016/j.ceramint.2023.05.105
  7. P.D. Battle, N.C. Gibb, S. Nixon. J. Solid State Chem. 79, 75 (1989). https://doi.org/10.1016/0022-4596(89)90252-1
  8. G. Li, L. Li, M. Zhao. Phys. Stat. Sol. B 197, 165 (1996). https://doi.org/10.1002/pssb.2221970123
  9. P.D. Battle, T.C. Gibb, S. Nixon. J. Solid State Chem. 77, 124 (1988). https://doi.org/10.1016/0022-4596(88)90099-0
  10. M.C. Weber, M. Guennou, H.J. Zhao, J. Iniguez, R. Vilarinho, A. Almeida, J.A. Moreira, J. Kreisel. Phys. Rev. B 94, 214103 (2016). https://doi.org/10.1103/PhysRevB.94.214103
  11. V. Sedykh, O. Rybchenko, V. Rusakov, S. Zaitsev, O. Barkalov, E. Postnova, T. Gubaidulina, D. Pchelina, V. Kulakov. J. Phys. Chem. Solids 171, 111001 (2022). https://doi.org/10.1016/j.jpcs.2022.111001
  12. G.B. Wright. Light Scattering Spectra of Solids. Springer Berlin, Heidelberg (1969). P. 763
  13. O.I. Barkalov, S.V. Zaitsev, V.D. Sedykh. Solid State Commun. 354, 114912 (2022). https://doi.org/10.1016/j.ssc.2022.114912
  14. M.O. Ramirez, M. Krishnamurthi, S. Denev, A. Kumar, S.-Y. Yang, Y.-H. Chu, E. Saiz, J. Seidel, A.P. Pyatakov, A. Bush, D. Viehland, J. Orenstein, R. Ramesh, V. Gopalan. Appl. Phys. Lett. 92, 2, 022511 (2008). https://doi.org/10.1063/1.2829681
  15. A.I. Dmitriev, S.V. Zaitsev, M.S. Dmitrieva, O.G. Rybchenko, V.D. Sedykh. FTT 66, 3, 386 (2024). (in Russian). https://doi.org/10.61011/FTT.2024.03.57479.1
  16. A.I. Dmitriev, S.V. Zaitsev, M.S. Dmitrieva. Pis'ma v ZhTF 50, 13, 24 (2024). (in Russian). https://doi.org/10.61011/PJTF.2024.13.58163.19894

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru