Spectral and diffraction properties of holographic photopolymer materials with photoinitiating systems based on a charge transfer complex and a coinitiator
Derevyanko D. I. 1,2, Shelkovnikov V.V. 1,3, Pen E.F. 2,3, Aliev S.I.1, Bardin V.V.1, Bukhtoyarova A.D.1
1N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of Russian Academy of Sciences (NIOCH SB RAS), Novosibirsk, Russia
2Institute of Automation and Electrometry, Siberian BranchRussian Academy of Sciences, Novosibirsk, Russia
3Novosibirsk State Technical University, Novosibirsk, Russia
Email: derevyanko@nioch.nsc.ru, vice@nioch.nsc.ru, pen@iae.nsk.su, bardin@nioch.nsc.ru, bad@nioch.nsc.ru

PDF
( Photoinitiating systems, (PIS)) have been developed based on a photosensitive ( Charge Transfer Complex, CTC), butyltris(4-anisyl)borate diethyl-9-oxo-10-(4-heptyloxyphenyl)-9H-thioxanthenonium, and a dye-coinitiator, Methylene Blue (MB) with butyltris(4-anisyl)borate tetrabutylammonium. Spectral properties and sensitivity of photopolymer materials based on individual and combined PIS (CTC, MB,CTC-MB) in the holographic recording mode have been studied. It has been shown that PIS-MB andPIS-CTC have sensitivity in a wide spectral range (400-700 nm). Using laser radiation with wavelengths λ_1=457 nm, λ_2=532 nm and λ_3=639 nm, monochrome and color reflection holograms with high diffraction efficiency (50-90%) were formed. Prevention of oxygen inhibition of radical polymerization in 30 μm thick layers of photopolymer materials was experimentally confirmed using butyltris(4-anisyl)borate tetrabutylammonium as a donor component in CTC and as a co-initiator in MB. Modulation of the refractive index during hologram recording, both with and without a protective film preventing oxygen access, was Δ n~ 0.008. Keywords: photoinitiating systems, charge transfer complexes, photopolymer materials, reflection holograms.
  1. G.S. Zheng, Y. Jiang, T. Wang, Huang A., Y. Zhang, P. Tang, S. Zhuang, Y. Liu, S. Yin. Opt. Express, 19 (3), 2216 (2011). DOI: 10.1364/OE.19.002216
  2. J. Guo, M.R. Gleeson, J.T. Sheridan. Physics Research International, 1, 2090 (2012). DOI: 10.1155/2012/803439
  3. A. Zanutta, E. Orselli, T. Facke, A. Bianco. Optical Materials Express, 6 (1), 252 (2016). DOI: 10.1364/OME.6.000252
  4. N. Vorzobova, P. Sokolov. Polymers, 11 (12), 2020 (2019). DOI: 10.3390/polym11122020
  5. Holoexpo. Nauka i praktika [Electronic resource] (in Russian). URL: http://www.holoexpo.ru
  6. W.S. Colburn, K.A. Haines. Applied Optics, 10 (7), 1636 (1971)
  7. V. Mikerin, V. Ugozhaev. J. Opt. Technol., 9 (4), 213 (2023). DOI: 10.1364/JOT.90.000213
  8. J. Li, P. Hu, Z. Zeng, J. Jin, J. Wu, X. Chen, J. Liu, Q. Li, M. Chen, Z. Zhang. Molecules, 27 (19), 6283 (2022). DOI: 10.3390/molecules27196283
  9. M.D. Alim., D.J. Glugla, S. Mavila, C. Wang, P.D. Nystrom, A.C. Sullivan, C.N. Bowman. ACS Applied Materials \& Interfaces, 10 (1), 1217 (2017). DOI: 10.1021/acsami.7b15063
  10. F.K. Bruder, T. Facke, T. Rolle. Polymers, 9 (12), 472 (2017). DOI: 10.3390/polym9100472
  11. D. Cody, S. Gul, T. Mikulchyk, M. Irfan, A. Kharchenko, Goldyn, S. Martin, S. Mintova, J. Cassidy, I. Naydenova. Appl. Opt., 57, 173 (2018). DOI: 10.3390/polym11122020
  12. D.A. Belousov, R.I. Kuts, K.A. Okotrub, V.P. Korolkov. Photonics, 10 (7), 771 (2023). DOI: 10.3390/photonics10070771
  13. B. Guo, M. Wang, D. Zhang, M. Sun, Y. Bi, Y. Zhao. ACS Applied Materials \& Interfaces, 15 (20), 24827 (2023). DOI: 10.1021/acsami.3c01446
  14. A. Ibrahim, X. Allonas, C. Ley, K. Kawamura, H. Berneth, F.K. Bruder, T. Facke, R. Hagen, D. Honel, T. Rolle, G. Walze, M.S. Weiser. Chemistry --- A European Journal, 20 (46), 15102 (2014). DOI: 10.1002/chem.201404072
  15. E.M. Mihaylova. Coatings, 12 (11), 1765 (2022). DOI: 10.3390/coatings12111765
  16. D. Zhang, Y. Zhao, B. Guo, Z. Zhang, D. Hu, Z. Wang, J. Zhu, Y. Ye, Y. Zhao. European Polymer Journal, 198, 112436 (2023). DOI: 10.3390/polym15132908
  17. A. Ibrahim, X. Allona, C. Ley, B.E. Fouhaili, C. Carre. J. Photopolymer Science and Technology, 27 (1), 517 (2014). DOI: 10.1021/cm402262g
  18. G. Ding, C. Jing, X. Qin, Y. Gong, X. Zhang, S. Zhang, Z. Luo, H. Li, F. Gao. Dyes Pigm., 137, 456 (2020). DOI: 10.1016/j.dyepig.2016.10.034
  19. W. Liao, C. Xu, X. Wu, Q. Liao, Y. Xiong, Z. Li, H. Tang. Dyes Pigm., 178, 108350 (2020). DOI: 10.1016/j.dyepig.2020.108350
  20. A. Ibrahim, C. Ley, X. Allonas, C. Carre, I. Pillin. J. Displ. Technol., 10, 456 (2014). DOI: 10.1109/JDT.2014.2314863
  21. J. Kabatc, K. Iwinska, A. Balcerak, D. Kwiatkowska, A. Skotnicka, Z. Czech, M. Bartkowiak. RSC Advances, 10 (42), 24817 (2020). DOI: /10.1039/D0RA03818K
  22. C. Forster, A. Andrieu-Brunsen. Chem. Commun., 59 (12), 1554 (2023). DOI: 10.1039/D2CC06595A
  23. K. Kawamura, H. Berneth, F. K. Bruder, T. Facke, R. Hagen, D. Honel, T. Rolle, G. Walze, M.S. Weiser. Chemistry --- A European J., 20 (46), 15102 (2014). DOI: 10.1002/chem.201404072
  24. D. Derevyanko, V. Shelkovnikov, V. Kovalskii, I. Zilberberg, S. Aliev, N. Orlova, V. Ugozhaev. Chemistry Select, 5 (38), 11939 (2020). DOI: 10.1002/slct.202002163
  25. Q. Ma, L. Buchon, V. Magne, B. Graff, F. Morlet-Savary, Y. Xu, M. Benltifa, S. Lakhdar, J. Lalevee. Macromolecular rapid commun., 43 (19), 2200314 (2020). DOI: 10.1002/marc.202200314
  26. I.Y. Kargapolova, N.A. Orlova, K.D. Erin, V.V. Shelkovnikov. Russian J. Organic Chemistry, 52, 37 (2016). DOI: 10.1134/S1070428016010073
  27. P. Garra, B. Graff, F. Morlet-Savary, C. Dietlin, J.-M. Becht, J.-P. Fouassier, J. Lalevee. Macromolecules, 51 (1), 57 (2018). DOI: 10.1021/acs.macromol.7b02185
  28. D. Wang, P. Garra, S. Lakhdar, B. Graff, J. Fouassier, H. Mokbel, M. Abdallah, J. Lalevee. ACS Appl. Polym. Mater., 1 (3), 561 (2019). DOI: 10.1021/acsapm.8b00244
  29. V.V. Shelkovnikov, E.V. Vasil'ev, V.V. Russkikh. Optoelectronics, Instrumentation and Data Processing, 52, 404 (2016). DOI: 10.3103/S8756699016040130
  30. F. Dumur. Catalysts, 13, 493 (2023). DOI: 10.3390/catal13030493
  31. C.Y. Shih, J.-S. Ni, Y.-C. Chen. Macromolecular Chemistry and Physics, 1 (2024). DOI: 10.1002/macp.202300428
  32. G.C. Weed, B.M. Monroe. United States Patent 5143818. Borate coinitiators for photopolymerizable compositions (1992)
  33. J. Kabatc, K. Iwinska, A. Balcerak, D. Kwiatkowska, A. Skotnicka, Z. Czech, M. Bartkowiak. SC Advances., 10, 24817 (2020). DOI: 10.1039/D0RA03818K
  34. X. Allonas, A. Ibrahim, C. Ley, H. Saimi, J. Bugnet, K. Kawamura. J. Photopolymer Science and Technology, 24 (5), 531 (2011). DOI: 10.2494/photopolymer.24.531
  35. N. Li, X.-C. Pan. Chinese J. Polymer Science, 39, 1084 (2021). DOI: 10.1007/s10118-021-2597-9
  36. V.V. Shelkovnikov, D.I. Derevyanko, L.V. Ektova. Polymer Science, Series B, 58 (5), 519 (2016). DOI: 10.1134/S1560090416050109
  37. S. Ke, X. Pu, D. Frederic, L. Jacques. J. Polymer Science, 59 (13), 1338 (2021). DOI: 10.1002/pol.20210225
  38. F. Dumur. European Polymer J., 195, 112193 (2023). DOI: 10.1016/j.eurpolymj.2023.112193
  39. D.I. Derevyanko, E.F. Pen., V.V. Shelkovnikov, V.V. Bardin. In vol.: HOLOEXPO 2022, Theses of reports. XIX Mezhdunarodnaya konferentsiya po golografii i prikladnym opticheskim tekhnologiyam (St.Petersburg, 2022), p. 322-329
  40. C. Choi, E.V. Vasiliev, V.V. Shelkovnikov, V. Loskutov. Patent US9874811B2 Photopolymer composition for holographic recording (2016)
  41. V.V. Shelkovnikov, E.F. Pen, V.I. Kovalevsky. Optical Memory and Neural Networks, 16, 75 (2007). DOI: 10.3103/S1060992X07020038
  42. V.P. Korol'kov, A.E. Kachkin, R.V. Shymanskiy. Mir izmereniy, 10, 37 (2012) (in Russian)
  43. D.I. Derevyanko, E.F. Pen, V.V. Shelkovnikov, S.I. Aliev. Optoelectronics, Instrumentation and Data Processing, 57 (6), 584 (2021). DOI: 10.3103/S8756699021060042
  44. W.K. Smothers et al. Dry film process for altering wavelength response of holograms. US Patent 5024909. 1991. https://www.freepatentsonline.com/5024909.pdf
  45. V.V. Shelkovnikov, E.V. Vasiliev, V.V. Russkikh. Avtometriya. 52 (4), (in Russian). 107 (2016). DOI: 10.15372/AUT20160413
  46. S.A. Babin, E.V. Vasiliev, V.I. Kovalevskiy, E.F. Pen, A.I. Plekhanov, V.V. Shelkovnikov. Avtometrija., 39 (2), 57 (2003) (in Russian)
  47. H. Kogelnik. The Bell System Technical J., 48, 2909 (1969)
  48. E.F. Pen, M.Y. Rodionov, V.V. Shelkovnikov. J. Optical Technology, 73 (7), 475 (2006). DOI: 10.1364/JOT.73.000475
  49. S.V. Dushina, V.A. Sharnin. Khimiya i khimicheskaya tekhnologiya, 56, (in Russian). 3 (2013)
  50. S.H. Stevenson, K.W. Steijn. Proc. SPIE, 2405, 88 (1995). DOI: 10.1117/12.205352
  51. I. Vazquez-Marti n, M. Gomez-Climente, J. Marin-Saez, M.V. Collados, J. Atencia. Proc. SPIE., 10233, 64 (2017). DOI: 10.1117/12.2265802

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru