Radiation of plasma diffuse jets in the wavelength range of 120-1000 nm at air pressures of 0.2-1.5 Torr
Tarasenko V.F. 1, Panchenko A.N. 1, Baksht E.Kh.1, Vinogradov N.P.1
1Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
Email: VFT@loi.hcei.tsc.ru, Alexei@loi.hcei.tsc.ru, BEH@loi.hcei.tsc.ru, vinikitavin@mail.ru

PDF
At present, studies of various atmospheric discharges in the stratosphere and mesosphere are ongoing. Considerable attention is paid to the study of the spectral characteristics of the radiation of red sprite plasma, including columnar ones. However, field studies require large material costs. Therefore, in parallel, work is being carried out on experimental modeling of the properties of high-altitude discharges in laboratory conditions at low atmospheric air pressures. The article presents the results of studies of the spectral properties of plasma diffuse jets (PDJs), which are analogs of columnar sprites. PDJs were formed using a pulse-periodic barrier discharge in quartz tubes at pressures of 0.2-2 Torr in air and nitrogen. In the spectral range from 120 to 1000 nm, data were obtained on the relative spectral density of radiation energy on three bands of the nitrogen molecule and one band of the molecular nitrogen ion both from the end of the quartz tube and from its side surface. It was found that in the emission spectra of the PDS from the end of the tube and its side surface near the electrodes, the intensity ratio of the bands of the second positive (2+) and first negative (1-) nitrogen systems changes in favor of the 1-system. Radiation was recorded in the vacuum-ultraviolet region of the spectrum on the a1g-X1Σg+ band of nitrogen molecules and on the lines of atomic nitrogen, the intensity of which increased with decreasing air pressure. It was confirmed that in the PDS, the spectral density of the radiation energy W of the 2+ nitrogen system bands exceeds the W of the 1+ nitrogen system bands. Keywords: plasma diffuse jets, air, nitrogen, low pressure, emission spectra, VUV lines and bands, intensity ratio.
  1. V.V. Surkov, M. Hayakawa. Surv. Geophys., 41 (5), 1101 (2020). DOI: 10.1007/s10712-020-09597-2
  2. F.J. Gordillo-Vazquez, F.J. Perez-Invernon. Atm. Res., 252, 105432 (2021). DOI: 10.1016/j.atmosres.2020.105432
  3. H.C. Stenbaek-Nielsen, M.G. McHarg, R. Haaland, A. Luque. J. Geophys. Res. Atmos., 125, e2020JD033170 (2020). DOI: 10.1029/2020JD033170
  4. C.L. Kuo, E. Williams, T. Adachi, K. Ihaddadene, S. Celestin, Y. Takahashi, R.R. Hsu, H.U. Frey, S.B. Mende, L.C. Lee. Front. Earth Sci., 9, 687989 (2021). DOI: 10.3389/feart.2021.687989
  5. R.C. Franz, R.J. Nemzek, J.R. Winckler. Science, 249, 48 (1990)
  6. D.D. Sentman, E.M. Wescott, D.L. Osborne, D.L. Hampton, M.J. Heavner. Geophys. Res. Lett., 22, 1205 (1995)
  7. G.K. Garipov, B.A. Khrenov, P.A. Klimov, V.V. Klimenko, E.A. Mareev, O. Martines, E. Mendoza, V.S. Morozenko et al. J. Geophys. Res.: Atmosph., 118, 370 (2013)
  8. A. Jehl, T. Farges, E. Blanc. J. Geophys. Res.: Space Phys., 118, 454 (2013)
  9. C. Kohn, O. Chanrion, T. Neubert. J. Geophys. Res.: Space Phys., 124, 3083 (2019)
  10. M.B. Garnung, S. Celestin, T. Farges. J. Geophys. Res.: Space Phys., 126, e2020JA028824 (2021)
  11. V.P. Pasko. Plasma Sources Sci. Technol., 16 (1), S13 (2007). DOI: 10.1088/0963-0252/16/1/S02
  12. J. Morrill, E. Bucsela, C. Siefring, M. Heavner S.D. Moudry, S. Slinker, D. Fernsler, E. Wescott, D. Sentman, D. Osborne. Geophys. Res. Lett., 29 (10), 1462 (2002). DOI: 10.1029/2001GL014018
  13. H.C. Stenbaek-Nielsen, M.G. McHarg, T. Kanmae, D.D. Sentman. Geophys. Res. Lett., 34, L11105 (2007). DOI: 10.1029/2007GL029881
  14. F. Jiang, C. Huang, Y. Wang. Meteorol. Atmosph. Phys., 131, 421 (2019)
  15. A.S. Kirillov, V.B. Belakhovsky. Geomagn. Aeron., 60, 781 (2020). DOI: 10.1134/S0016793220060079
  16. Y. Goto, Y. Ohba, K. Narita. J. Atmosph. Electr., 27 (2), 105 (2007). DOI: 10.1541/jae.27.105
  17. A. Robledo-Martinez, A. Garcia-Villarreal, H. Sobral. J. Geophys. Res.: Space Phys., 122, 948 (2017). DOI: 10.1002/2016JA023519
  18. F.C. Parra-Rojas, M. Passas, E. Carrasco, A. Luque, I. Tanarro, M. Simek, F.J. Gordillo-Vazquez. J. Geophys. Res.: Space Phys., 118 (7), 4649 (2013). DOI: 10.1002/jgra.50433
  19. V. Tarasenko, N. Vinogradov, E. Baksht, D. Sorokin. J. Atmosph. Sci. Res., 5 (03), 26 (2022). DOI: 10.30564/jasr.v5i3.4858
  20. V.F. Tarasenko, E.Kh. Baksht, N.P. Vinogradov, D.A. Sorokin. Opt. Spectrosc., 130 (12), 1499 (2022). DOI: 10.21883/EOS.2022.12.55234.4014-22
  21. D.A. Sorokin, V.F. Tarasenko, E.Kh. Baksht, N.P. Vinogradov. Physics of Plasmas, 30 (8), 083515 (2023). DOI: 10.1063/5.0153509
  22. V.F. Tarasenko, E.K. Baksht, V.A. Panarin, N.P. Vinogradov. Plasma Physics Reports, 49 (6), 786 (2023). DOI: 10.1134/S1063780X23700393
  23. V.S. Skakun, V.F. Tarasenko, V.A. Panarin, D.A. Sorokin. Instruments and Experimental Techniques, 67 (3), 519 (2024). DOI: 10.1134/S0020441224700817
  24. G.N. Gerasimov. Physics-Uspekhi, 47 (2), 149 (2004). DOI: 10.1070/PU2004v047n02ABEH001681
  25. B. Zhang, Y. Zhu, X. Zhang, N. Popov, T. Orriere, D.Z. Pai, S.M. Starikovskaia. Plasma Sources Sci. Technol., 32 (11), 115014 (2023). DOI: 10.1088/1361-6595/ad085c
  26. A. Malagon-Romero, J. Teunissen, H.C. Stenbaek-Nielsen, M.G. McHarg, U. Ebert, A. Luque. Geophys. Res. Lett., 47, e2019GL085776 (2020). DOI: 10.1029/2019GL085776
  27. W. Lyons. Weatherwise, 75 (6), 14 (2022). DOI: 10.1080/00431672.2022.2116249
  28. T. Kanmae, H.C. Stenbaek-Nielsen, M.G. McHarg, R.K. Haaland. Geophys. Res. Lett., 37, L13808 (2010). DOI: 10.1029/2010GL043739
  29. M. Hervig, R.E. Thompson, M. McHugh, L.L. Gordley, J.M. Russell III, M.E. Summers. Geophys. Res. Lett., 28, 971 (2001). DOI: 10.1029/2000GL012104
  30. V.F. Tarasenko, N.P. Vinogradov, E.Kh. Baksht, D.A. Sorokin, D.S. Pechenitsin. Atmospheric and Oceanic Optics, 37 (4), 547 (2024). DOI: 10.1134/S1024856024700738
  31. A. Fierro, J. Lehr, B. Yee, E. Barnat, C. Moore, M. Hopkins, P. Clem. J. Appl. Phys., 129 (7), 073302 (2021). DOI: 10.1063/5.0033412
  32. V.F. Tarasenko (ed.). Runaway Electrons Preionized Diffuse Discharges (Nova Science Publishers, Inc., NY, 2014).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru