Optoelectronic properties of highly doped Ge:Sb layers prepared by ion-beam methods
Novikov H.A.1, Batalov R.I. 1, Faǐzrakhmanov I.A.1, Shustov V.A.1, Simakin S.G.2, Galkin K.N.3, Baidakova N.A.4
1Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia
2Valiev Institute of Physics and Technology of RAS, Yaroslavl Branch, Yaroslavl, Russia
3Institute of Automation and Control Processes, Far East Branch Russian Academy of Science, Vladivostok, Russia
4The Institute for Physics of Microstructures of the Russian Academy of Sciences - the branch of the Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences named after A.V. Gaponov-Grekhov, Nizhny Novgorod, Russia
Email: h.novikoff@gmail.com, batalov@kfti.knc.ru, fiak@kfti.knc.ru, shustov@kfti.knc.ru, simser@mail.ru, galkinkn@iacp.dvo.ru, banatale@ipmras.ru

PDF
In this work, in order to obtain highly doped germanium layers with donor impurity of antimony (Ge:Sb), promising for optoelectronic applications, the deposition of 200 nm thick Ge:Sb layers on a single-crystal p-Ge substrate was carried out by ion-beam sputtering followed by pulsed ion-beam treatment in the liquid-phase mode. The depth distribution of Sb atoms in Ge before and after pulsed treatment was studied by secondary ion mass spectrometry. The structural state of the Ge:Sb layers was studied by X-ray diffraction and Raman spectroscopy. The optical properties of Ge:Sb layers in the near and mid-IR region (1-10 μm) were investigated by measuring the transmission, reflection and photoluminescence at 300 K. The photoresponse of n-Ge:Sb/p-Ge diode structures was also studied at 300 K. It was found that pulsed ion-beam treatment in the melt mode leads to antimony diffusion into the Ge crystal to 1 μm, the formation of a single-crystal Ge:Sb layer with a tensile strain of 0.8%, a drop in sample transmittance to zero for λ>5 μm, the formation of a high electron concentration in the layer (1.5·1020 cm-3), an enhancement of the direct-band photoluminescence at λ=1.66 μm and to obtaining an extended photoresponse to about ~2 μm. Keywords: germanium, antimony, doping, ion-beam sputtering, pulsed ion-beam treatment, melting, crystallization, photoluminescence, photoresponse, optoelectronics.
  1. NSM Archive --- Physical Properties of Semiconductors [Electronic resource]. URL: http://www.matprop.ru/ Ge_bandstr
  2. Tydex. Materials for transmission optics ( germanium) [Electronic resource]. URL: https://www.tydexoptics. com/ru/materials/for_transmission_optics/germanium/
  3. J. Liu, L.C. Kimerling, J. Michel. Semicond. Sci. Technol., 27, 094006 (2012). DOI: 10.1088/0268-1242/27/9/094006
  4. S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, A. Sakai. Appl. Phys. Lett., 92, 231916 (2008). DOI:10.1063/1.2945629
  5. Y. Bai, K.E. Lee, C. Cheng, M.L. Lee, E.A. Fitzgerald. J. Appl. Phys., 104, 084518 (2008). DOI:10.1063/1.3005886
  6. D. Nam, D. Sukhdeo, A. Roy, K. Balram, S.-L. Cheng, K.C.-Y. Huang, Z. Yuan, M. Brongersma, Y. Nishi, D. Miller, K. Saraswat. Optics Express, 19 (27), 25866 (2011). DOI: 10.1364/OE.19.025866
  7. N.A. Baidakova, A.N. Yablonsky, N.S. Gusev, K.E. Kudryavtsev, E.E. Morozova, D.V. Yurasov, V.Ya. Aleshkin, A.V. Nezhdanov, A.V. Novikov. FTP, 56 (10), 954 (2022). (in Russian) DOI: 10.21883/FTP.2022.10.53955.9852
  8. R. Pillarisetty. Nature, 479, 324 (2011). DOI: 10.1038/nature10678
  9. S. Saito, A.Z. Al-Attili, K. Oda, Y. Ishikawa. Semicond. Sci. Technol., 31, 043002 (2016). DOI: 10.1088/0268-1242/31/4/043002
  10. A.M. Titova, V.G. Shengurov, D.O. Filatov, S.A. Denisov, V.Yu. Chalkov, M.V. Ved', A.V. Zaitzev, A.A. Sushkov, N.A. Alyabina. Mater. Sci. Eng. B, 289, 116219 (2023). DOI: 10.1016/j.mseb.2022.116219
  11. L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D.J. Paul, M. Ortolani, P. Biagioni. Nano Lett., 15, 7225 (2015). DOI: 10.1021/acs.nanolett.5b03247
  12. J.M. Hartmann, J.P. Barnes, M. Veillerot, J.M. Fedeli, Q. Benoit A La Guillaume, V. Calvo. J. Cryst. Growth, 347, 37 (2012). DOI: 10.1016/j.jcrysgro.2012.03.023
  13. D.V. Yurasov, A.V. Antonov, M.N. Drozdov, P.A. Yunin, B.A. Andreev, P.A. Bushuykin, N.A. Baydakova, A.V. Novikov. J. Cryst. Growth, 491, 26 (2018). DOI: /10.1016/j.jcrysgro.2018.03.037
  14. D.S. Prokhorov, V.G. Shengurov, S.A. Denisov, D.O. Filatov, A.V. Zdoroveyshchev, V.Y. Chalkov, A.V. Zaitsev, M.V. Ved, M.V. Dorokhin, N.A. Baidakova. Semicnd., 53 (9), 1293 (2019). (in Russian) DOI: 10.21883/FTP.2019.09.48142.26
  15. A.V. Dvurechensky, G.A. Kachurin, E.V. Nidaev, L.S. Smirnov. Impulsny otzhig poluprovodnikovykh materialov (Nauka, M., 1982)
  16. R.I. Batalov, R.M. Bayazitov, I.A. Faizrakhmanov, N.M. Lyadov, V.A. Shustov, G.D. Ivlev. J. Phys. D, 49, 395102 (2016). DOI: 10.1088/0022-3727/49/39/395102
  17. E. Bruno, G.G. Scapellato, G. Bisognin, E. Carria, L. Romano, A. Carnera, F. Priolo. J. Appl. Phys., 108, 124902 (2010). DOI: 10.1063/1.3520671
  18. J. Frigerio, A. Balladio, K. Gallacher, V. Gilberti, L. Baldassarre, R. Millar, R. Milazzo, L. Maiolo, A. Minotti, F. Bottegoni, P. Biagioni, D. Paul, M. Ortolani, A. Pecora, E. Napollitani, G. Isella. J. Phys. D, 50, 465103 (2017). DOI: 10.1088/1361-6463/aa8eca
  19. C. Carraro, R. Milazzo, F. Sgarbossa, D. Fontana, G. Maggioni, W. Raniero, D. Scarpa, L. Baldassarre, M. Ortolani, A. Andrighetto, D.R. Napoli, D. De Salvador, E. Napolitani. Appl. Surf. Sci., 509, 145229 (2020). DOI: 10.1016/j.apsusc.2019.145229
  20. G.E. Remnev, I.F. Isakov, M.S. Opekounov, G.I. Kotlyarevsky, V.L. Kutuzov, V.S. Lopatin, V.M. Matvienko, M.Yu. Ovsyannikov, A.V. Potyomkin, V.A. Tarbokov. Surf. Coat. Technol., 96, 103 (1997). DOI: 10.1016/S0257-8972(97)00116-3
  21. A.I. Pushkarev, Y.I. Egorova, A.I. Prima, P.M. Korusenko, S.N. Nesov. Generatsyya, diagnostika i primenenie moschnykh ion'nykh puchkov s vysokoy plotnostiyu energii (ANS "SibAC", Novosibirsk, 2019)
  22. R.I. Batalov, R.M. Bayazitov, G.A. Novikov, V.A. Shustov, N.M. Lyadov, A.V. Novikov, P.A. Bushuikin, N.A. Baidakova, M.N. Drozdov, P.A. Yunin. Avtometriya. 55, 5 (2019). (in Russian). DOI: 10.15372/AUT20190501
  23. R.M. Bayazitov, R.I. Batalov, G.A. Novikov, I.A. Fayzrakhmanov, N.M. Lyadov, V.A. Shustov, V.V. Vorobyev. Ezhegodnik KFTI 2016, 80--85 (2017). (in Russian)
  24. R.I. Batalov, R.M. Bayazitov, G.A. Novikov, I.A. Fayzrakhmanov, V.A. Shustov, G.D. Ivlev. Mikroelektronika, 47 (74), (2018) (in Russian). DOI: 10.31857/S054412690001740-1
  25. G.A. Novikov, R.I. Batalov, R.M. Bayazitov, I.A. Fayzrakhmanov, N.M. Lyadov, V.A. Shustov, K.N. Galkin, N.G. Galkin, I.M. Chernev, G.D. Ivlevlev, S.L. Prokopyev, P.I. Gaiduk. FTP, 49 (6), 746 (2015). (in Russian)
  26. Y.-Y. Fang, J. Tolle, R. Roucka, A.V.G. Chizmeshya, J. Kouvetakis, V.R. D'Costa, J. Menendez. Appl. Phys. Lett., 90, 061915 (2007). DOI: 10.1063/1.2472273
  27. J. Pankov. Opticheskie protsesy v poluprovodnikakh (Mir, M., 1973). (in Russian)
  28. J. Wagner, G. Contreras, A. Compaan, M. Cardona, A. Axmann. Mater. Res. Soc. Symp. Proc., 23, 147--152 (1984).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru