Physics of the Solid State
Volumes and Issues
Raman scattering and luminescence of CoMF6·6H2O (M = Si, Ge, Ti) activated by Mn4+ ions
Pyastolova Yu. V. 1, Aleksandrovsky Aleksandr S. 1,2, Laptash N. M.3, Krylov A. S. 1, Dubrovskiy A. A. 1
1Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian Federal University, Krasnoyarsk, Russia
3Institute of Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia
Email: jul@iph.krasn.ru, aleksandrovsky@kirensky.ru, laptash@ich.dvo.ru, shusy@iph.krasn.ru, andre-do@yandex.ru

PDF
Mn4+-doped red-emitting fluorides are a promising class of materials for improving the color rendering and luminous efficiency of white light-emitting diodes (WLEDs). Phosphors based on hydrated cobalt hexafluoridometallates CoMF6· 6H2O (M = Si, Ge) activated with Mn4+ ions demonstrate red luminescence in the range of 600-650 nm upon excitation into the ^4A2-^4T2 (450-480 nm) and ^4A2-^4T1 (350-370 nm) bands. The luminescence spectra are formed by electron-phonon components at the ^2E-^4A2 transition involving vibrations of the MnF62- octahedron. The quantum yield of CoSiF6· 6H2O: Mn4+ is maximized at 357 nm excitation and is equal to 5% at 5.5% manganese concentration. When the crystal lattice of CoTiF6· 6H2O is formed, the depth of the potential minimum for the Mn4+ ion is smaller than in the case of CoSiF6· 6H2O and CoGeF6·6H2O, which leads to random fluctuations of the crystal field in the ensemble of positions occupied by this ion. Keywords: red phosphor, fluorides, Mn4+, Raman scattering, luminescence.
  1. G.B. Nair, H.C. Swart, S.J. Dhoble. Progr. Mater. Sci. 109, 100622 (2020)
  2. S. Adachi. ECS J. Solid State Sci. Technol. 9, 016001 (2020)
  3. S. Adachi. ECS J. Solid State Sci. Technol. 10, 026002 (2021)
  4. S. Adachi. J. Lumin. 263, 119993 (2023)
  5. J. Zhong, D. Chen, X. Wang, L. Chen, H. Yu, Z. Ji, W. Xiang. J. Alloys Compd. 662, 232-239 (2016)
  6. R. Hoshino, S. Sakurai, T. Nakamura, S. Adachi. J. Lumin. 184, 160-168 (2017)
  7. M. Kubus, D. Enseling, T. Justel, H.-J. Meyer. J. Lumin. 137, 88 (2013)
  8. R. Hoshino, S. Adachi. J. Appl. Phys. 114, 213502 (2013)
  9. R. Hoshino, S. Adachi. J. Lumin. 162, 63 (2015)
  10. R. Hoshino, S. Adachi. Opt. Mater. 48, 36 (2015)
  11. Yu.V. Gerasimova, A.S. Aleksandrovsky, N.M. Laptash, A.S. Krylov, M.A. Gerasimov, A.A. Dubrovskiy. Opt. Mater. 144, 114343 (2023)
  12. H. Lynton, P-Y. Siew. Can. J. Chem. 51, 227 (1973)
  13. S. Ray, A. Zalkin, D.H. Templeton. Acta Cryst. 29, 2741 (1973)
  14. A.A. Udovenko, E.B. Merkulov, D.Kh. Shlyk, N.M. Laptash. ZhSKh, 65, 11 (2024). (in Russian)
  15. B.F. Hoskins, A. Linden. Austr. J. Chem. 40, 565 (1987)
  16. S.V. Melnikova, N.M. Laptash, E.I. Pogoreltsev. J. Fluorine Chem., 263, 110048 (2022)
  17. R.L. Davidovich, T.A. Kaidalova, T.F. Levchishina. Zh. Strukt. Khim. 12, 185 (1971)
  18. V.V. Korochentsev, N.M. Laptash, Solid State Sci. 148, 107433 (2024)
  19. T. Senden, R.J.A. van Dijk-Moes, A. Meijerink. Light: Sci. Appl. 7, 8 (2018)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru