Femtosecond laser synthesis of hybrid magnetic nanoparticles based on iron and gold with photothermal response
Chernikov A. S.
1, Kochuev D. A.
1, Dzus M. A.
1, Voznesenskaya A. A.
1, Kurilova U. E.
1,2,3, Chkalov R. V.
1, Kazak A. V.
1,4, Gerasimenko A. Yu.
2,3, Khorkov K. S.
11Stoletovs Vladimir state university, Vladimir, Russia
2National Research University of Electronic Technology, Zelenograd, Moscow, Russia
3I.M. Sechenov First Moscow State Medical University, Moscow, Russia
4Moscow Polytechnic University, Moscow, Russia
The paper presents the results of femtosecond laser ablation synthesis of magnetite nanoparticles, hybrid nanoparticles based on iron and gold in deionized water. The average size of the resulting hybrid nanoparticles was 60 nm with inclusions of gold nanoparticles no larger than 10 nm on the surface. The results of scanning electron microscopy of the obtained nanoparticles, optical density curves and dependences of photothermal activity of solutions under irradiation with continuous laser radiation at 805 nm are presented. Keywords: laser ablation, synthesis of iron nanoparticles, magnetic nanoparticles, hybrid nanoparticles, ultrashort lasers.
- T.T. Nguyen, F. Mammeri, S. Ammar. Nanomater. 8, 3, 149 (2018). https://doi.org/10.3390/nano8030149
- M. Miola, C. Multari, E. Vern\`e. Mater. 15, 19, 7036 (2022). https://doi.org/10.3390/ma15197036
- P. Das, P. Fatehbasharzad, M. Colombo, L. Fiandra, D. Prosperi. Trends. biotechnol. 37, 9, 995 (2019). https://doi.org/10.1016/j.tibtech.2019.02.005
- C. Zhang, L. Huang, H. Pu, D.-W. Sun. Trends. Food Sci. \& Technol. 113, 366 (2021) https://doi.org/10.1016/j.tifs.2021.05.007
- S. Besner, A.V. Kabashin, F.M. Winnik, M. Meunier. Appl. Phys. A 93, 4, 955 (2008). https://doi.org/10.1007/s00339-008-4773-y
- E. Fazio, B. Gokce, A. De Giacomo, M. Meneghetti, G. Compagnini, M. Tommasini, F. Waag, A. Lucotti, C.G. Zanchi, P.M. Ossi, M. Dell'Aglio, L. D'Urso, M. Condorelli, V. Scardaci, F. Biscaglia, L. Litti, M. Gobbo, G. Gallo, M. Santoro, S. Trusso, F. Neri. Nanomater. 10, 11, 2317 (2020). https://doi.org/10.3390/nano10112317
- D. Zhang, Z. Li, K. Sugioka. J. Phys: Photonics 3, 4, 042002 (2021). https://doi.org/10.1088/2515-7647/ac0bfd
- A.A. Popov, Z. Swiatkowska-Warkocka, M. Marszalek, G. Tselikov, I.V. Zelepukin, A. Al-Kattan, S.M. Deyev, S.M. Klimentov, T.E. Itina, A.V. Kabashin. Nanomater. 12, 4, 649 (2022). https://doi.org/10.3390/nano12040649
- A.S. Chernikov, G.I. Tselikov, M.Yu. Gubin, A.V. Shesterikov, K.S. Khorkov, A.V. Syuy, G.A. Ermolaev, I.S. Kazantsev, R.I. Romanov, A.M. Markeev, A.A. Popov, G.V. Tikhonowski, O.O. Kapitanova, D.A. Kochuev, A.Yu. Leksin, D.I. Tselikov, A.V. Arsenin, A.V. Kabashin, V.S. Volkov, A.V. Prokhorov. J. Mater. Chem. C 11, 10, 3493 (2023). https://doi.org/10.1039/D2TC05235K
- J. Canet-Ferrer, P. Albella, A. Ribera, J.V. Usagre, S.A. Maier. Nanoscale Horiz. 2, 4, 205 (2017). https://doi.org/10.1039/c6nh00225k
- M.Y. Gubin, M.G. Gladush, A.V. Prokhorov. Opt. Spectrosc. 126, 1, 83 (2019). https://doi.org/10.1134/S0030400X19010065
- N.A. Mortensen, S. Raza, M. Wubs, T. S ndergaard, S.I. Bozhevolnyi. Nature Commun. 5, 1, 3809 (2014). https://doi.org/10.1038/ncomms4809
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.