Physics of the Solid State
Volumes and Issues
Femtosecond laser synthesis of hybrid magnetic nanoparticles based on iron and gold with photothermal response
Chernikov A. S. 1, Kochuev D. A. 1, Dzus M. A. 1, Voznesenskaya A. A. 1, Kurilova U. E. 1,2,3, Chkalov R. V. 1, Kazak A. V. 1,4, Gerasimenko A. Yu. 2,3, Khorkov K. S. 1
1Stoletovs Vladimir state university, Vladimir, Russia
2National Research University of Electronic Technology, Zelenograd, Moscow, Russia
3I.M. Sechenov First Moscow State Medical University, Moscow, Russia
4Moscow Polytechnic University, Moscow, Russia

PDF
The paper presents the results of femtosecond laser ablation synthesis of magnetite nanoparticles, hybrid nanoparticles based on iron and gold in deionized water. The average size of the resulting hybrid nanoparticles was 60 nm with inclusions of gold nanoparticles no larger than 10 nm on the surface. The results of scanning electron microscopy of the obtained nanoparticles, optical density curves and dependences of photothermal activity of solutions under irradiation with continuous laser radiation at 805 nm are presented. Keywords: laser ablation, synthesis of iron nanoparticles, magnetic nanoparticles, hybrid nanoparticles, ultrashort lasers.
  1. T.T. Nguyen, F. Mammeri, S. Ammar. Nanomater. 8, 3, 149 (2018). https://doi.org/10.3390/nano8030149
  2. M. Miola, C. Multari, E. Vern\`e. Mater. 15, 19, 7036 (2022). https://doi.org/10.3390/ma15197036
  3. P. Das, P. Fatehbasharzad, M. Colombo, L. Fiandra, D. Prosperi. Trends. biotechnol. 37, 9, 995 (2019). https://doi.org/10.1016/j.tibtech.2019.02.005
  4. C. Zhang, L. Huang, H. Pu, D.-W. Sun. Trends. Food Sci. \& Technol. 113, 366 (2021) https://doi.org/10.1016/j.tifs.2021.05.007
  5. S. Besner, A.V. Kabashin, F.M. Winnik, M. Meunier. Appl. Phys. A 93, 4, 955 (2008). https://doi.org/10.1007/s00339-008-4773-y
  6. E. Fazio, B. Gokce, A. De Giacomo, M. Meneghetti, G. Compagnini, M. Tommasini, F. Waag, A. Lucotti, C.G. Zanchi, P.M. Ossi, M. Dell'Aglio, L. D'Urso, M. Condorelli, V. Scardaci, F. Biscaglia, L. Litti, M. Gobbo, G. Gallo, M. Santoro, S. Trusso, F. Neri. Nanomater. 10, 11, 2317 (2020). https://doi.org/10.3390/nano10112317
  7. D. Zhang, Z. Li, K. Sugioka. J. Phys: Photonics 3, 4, 042002 (2021). https://doi.org/10.1088/2515-7647/ac0bfd
  8. A.A. Popov, Z. Swiatkowska-Warkocka, M. Marszalek, G. Tselikov, I.V. Zelepukin, A. Al-Kattan, S.M. Deyev, S.M. Klimentov, T.E. Itina, A.V. Kabashin. Nanomater. 12, 4, 649 (2022). https://doi.org/10.3390/nano12040649
  9. A.S. Chernikov, G.I. Tselikov, M.Yu. Gubin, A.V. Shesterikov, K.S. Khorkov, A.V. Syuy, G.A. Ermolaev, I.S. Kazantsev, R.I. Romanov, A.M. Markeev, A.A. Popov, G.V. Tikhonowski, O.O. Kapitanova, D.A. Kochuev, A.Yu. Leksin, D.I. Tselikov, A.V. Arsenin, A.V. Kabashin, V.S. Volkov, A.V. Prokhorov. J. Mater. Chem. C 11, 10, 3493 (2023). https://doi.org/10.1039/D2TC05235K
  10. J. Canet-Ferrer, P. Albella, A. Ribera, J.V. Usagre, S.A. Maier. Nanoscale Horiz. 2, 4, 205 (2017). https://doi.org/10.1039/c6nh00225k
  11. M.Y. Gubin, M.G. Gladush, A.V. Prokhorov. Opt. Spectrosc. 126, 1, 83 (2019). https://doi.org/10.1134/S0030400X19010065
  12. N.A. Mortensen, S. Raza, M. Wubs, T. S ndergaard, S.I. Bozhevolnyi. Nature Commun. 5, 1, 3809 (2014). https://doi.org/10.1038/ncomms4809

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru