Physics of the Solid State
Volumes and Issues
Estimation of second viral coefficient for polypropylene in organic solvents by computer simulation
Egorov V. I. 1, Maksimova O. G. 1
1Cherepovets State University, Cherepovets, Russia
Email: rvladegorov@rambler.ru

PDF
We present two new methods to estimate the value of the second viral coefficient for dilute polymer solutions. The first method utilizes the results of molecular dynamics simulation; the second one is based on the hybrid approach, which combines Monte-Carlo simulation with a numerical solution of the Ornstein-Zernike equation. The results show that both methods give the correct ascending arrangement of second viral coefficients for polypropylene solutions in organic solvents. The method based on molecular dynamics has a precision advantage, while the hybrid approach has better performance. Keywords: polymer solutions, second viral coefficient, molecular dynamics, Monte-Carlo, Ornstein-Zernike equation.
  1. T. Magnussen, P. Rasmussen, A. Fredenslund. Ind. Eng. Chem. Proc. Des. Dev. 20, 2, 331 (1981). https://doi.org/10.1021/i200013a024
  2. Y. Dong, Y. Guo, R. Zhu, J. Zhang, Z. Lei. Ind. Eng. Chem. Res. 59, 21, 10172 (2020). https://doi.org/10.1021/acs.iecr.0c00113
  3. A.V. Maksimov, M. Molina, O.G. Maksimova, G.Y. Gor. ACS Appl. Polymer Mater. 5, 3, 2026 (2023). https://doi.org/10.1021/acsapm.2c02074
  4. G. Gor, A.V. Maksimov, O. Maksimova, M. Molina. Electrochem. Soc. Meet. Abstr. 244, 3, 461 (2023). https://doi.org/10.1149/MA2023-023461mtgabs
  5. G.Y. Gor, J. Cannarella, C.Z. Leng, A. Vishnyakov, C.B. Arnold. J. Power Sources 294, 167 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.028
  6. K. Koga. J. Phys. Chem. B 117, 41, 12619 (2013). https://doi.org/10.1021/jp4085298
  7. A.A. Chialvo, O.D. Crisalle. J. Chem. Phys. 150, 12, 124503 (2019). https://doi.org/10.1063/1.5047525
  8. P.G. Khalatur, A.R. Khokhlov. Molecular Phys. 93, 4, 555 (1998). https://doi.org/10.1080/002689798168899
  9. V.I. Egorov, O.G. Maksimova. Bull. Russ. Acad. Sci.: Phys. 87, 9, 1349 (2023). https://doi.org/10.3103/S1062873823703288
  10. A. Brodka, T.W. Zerda. J. Chem. Phys. 104, 16, 6313 (1996). https://doi.org/10.1063/1.471271
  11. Y.M. Munoz-Munoz, G. Guevara-Carrion, M. Llano-Restrepo, J. Vrabec. Fluid Phase Equilibria 404, 150 (2015)
  12. R.D. Mountain. J. Phys. Chem. C 117, 8, 3923 (2013). https://doi.org/10.1021/jp3083562
  13. S. Eckelsbach, T. Janzen, A. Koster, S. Miroshnichenko, Y.M. Munoz-Munoz, J. Vrabec. In: High Performance Computing in Science and Engineering '14 / Eds W. Nagel, D. Kroner, M. Resch. P. 645. Springer International Publishing (2015). https://doi.org/10.1007/978-3-319-10810-0_42
  14. E.E. Fileti, S. Canuto. J. Computat. Methods. Sci. Eng. 4, 4, 559 (2004). https://doi.org/10.3233/JCM-2004-4403
  15. M. Martin, J.I. Siepmann. J. Phys. Chem. B 103, 21, 4508 (1999). https://doi.org/10.1021/jp984742e

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru