Physics of the Solid State
Volumes and Issues
Nanocrystalline zirconia for functional applications obtained by deposition from low-pressure arc discharge plasma
Fedorov L. Yu. 1,2, Karpov I. V. 1,2
1Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian Federal University, Krasnoyarsk, Russia
Email: 1401-87@mail.ru

PDF
The controlled vacuum-arc synthesis of nanoparticles and nanocrystalline layers based on zirconium dioxide ZrO2 is considered, which allows regulating the percentage ratio of the monoclinic and tetragonal phases. The formation of the tetragonal phase is associated with the formation of a large number of oxygen vacancies formed due to high-speed quenching of nanoparticles. The samples were characterized using X-ray phase analysis. The electrical properties of the samples were studied using impedance spectroscopy and measuring the current-voltage characteristics. The dependence of the permittivity and conductivity in the direct current mode on the phase composition was established. The coexistence of the m- and t-ZrO2 phases provides oxygen deficiency in the sample volume. This contributes to the formation of two reversible resistance states - the effect of resistive switching. Keywords: vacuum arc, zirconium oxide, memristor, oxygen vacancies.
  1. O.N. Gorshkov, I.N. Antonov, A.I. Belov, A.P. Kasatkin, A.N. Mikhaylov. Tech. Phys. Lett. 40, 2, 101 (2014). DOI: https://doi.org/10.1134/S1063785014020084
  2. A.V. Emelyanov, K.E. Nikiruy, V.A. Demin, V.V. Rylkov, A.I. Belov, D.S. Korolev, E.G. Gryaznov, D.A. Pavlov, O.N. Gorshkov, A.N. Mikhaylov, P. Dimitrakis. Microelectron. Eng. 215, 110988 (2019)
  3. S. Shukla, S. Seal. Int. Mater. Rev. 50, 45 (2005). DOI: 10.1179/174328005X14267
  4. S. Kumar, A.K. Ojha. J. Alloys Compd. 644, 654 (2015). DOI: 10.1016/j.jallcom.2015.04.183
  5. C.H. Lai, H.W. Chen, C.Y. Liu. Materials 9, 551 (2016). DOI: 10.3390/ma9070551
  6. A.V. Ushakov, I.V. Karpov, L.Yu. Fedorov, E.A. Goncharova, M.V. Brungardt, V.G. Demin. Technical Physics 67, 2410 (2022). DOI: 10.21883/TP.2022.15.55268.157-2
  7. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, S.M. Zharkov. Vacuum 128, 123 (2016). DOI: 10.1016/j.vacuum.2016.03.025
  8. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, M.I. Petrov. Vacuum 133, 25 (2016). DOI: 10.1016/j.vacuum.2016.08.007
  9. Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany (2008)
  10. E.W. Lim, R. Ismail. Electronics 4, 586 (2015). DOI: 10.3390/electronics4030586
  11. M.J. Rozenberg, M.J. Sanchez, R. Weht, C. Acha, F. Gomez-Marlasca, P. Levy. Phys. Rev. B 81, 115101 (2010). DOI: 10.1103/PhysRevB.81.115101

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru