Coupling efficiency of single mode fiber with photonic integrated circuit based on Si3N4
Ivashentseva I. V.
1,2, Tretyakov I. V.
3, Kaurova N. S.
1, Golikov A. D.
1, Goltsman G. N.
11Moscow Pedagogical State University, Moscow, Russia
2National Research University Higher School of Economics, Moscow, Russia
3Astro Space Center of P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
Email: irinivas22@yandex.ru, ivantretykov@mail.ru
This work is devoted to edge coupling of optical fibres with waveguides of Si3N4-based photonic integrated circuits. At the edge coupling splicing of single-mode optical fibre with high numerical aperture fibre was utilised to reduce the mode field diameter of optical fibre, and for photonic integrated circuit, a field mode converter based on inverse linear taper was employ. The inverse linear taper is a trapezoidal prism which is in contact with a wider part the waveguide and narrowing to 0.3 μm to the ends of the crystal of the photonic integrated circuit, the height of the trapezium lying at the base of this prism is 300 μm. Experimentally demonstrated the possibility to reduce the coupling loss to 0.7 dB per edge. Keywords: Single-mode fibre, high numerical aperture fibre, inverse linear taper, photonic integrated circuit, edge coupling.
- X. Mu, S. Wu, L. Cheng, H.Y. Fu. Appl. Sci., 10 (4), 1538 (2020). DOI: 10.3390/app10041538
- C. Sparrow, E.Marti n-Lopez, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y.N. Joglekar, T. Hashimoto, N. Matsuda, J.L. O'Brien, D.P. Tew, A. Laing. Nature, 557, 660-667 (2018). DOI: 10.1038/s41586-018-0152-9
- G.R. Steinbrecher, J.P. Olson, D. Englund, J. Carolan. npj Quantum Inf 5, 60 (2019). DOI: 10.1038/s41534-019-0174-7
- H. Choi, M. Pant, S. Guha, D. Englund. npj Quantum Inf 5, 104 (2019). DOI: 10.1038/s41534-019-0215-2
- T.L. Koch, U. Koren. IEEE J. Quant. Electron., 27 (3), 641-653 (1991). DOI: 10.1109/3.81373
- D.J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, C. Roeloffzen. Proc. IEEE, 106 (12), 2209-2231 (2018). DOI: 10.1109/JPROC.2018.2861576
- C.R. Doerr. Frontiers Phys., 3, 37 (2015). DOI: 10.3389/fphy.2015.00037
- M.A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, J. Bowers. Appl. Sci., 8 (7), 1139 (2018). DOI: 10.3390/app8071139
- Hui Wang, Jian Qin, Xing Ding, Ming-Cheng Chen, Si Chen, Xiang You, Yu-Ming He, Xiao Jiang, L. You, Z. Wang, C. Schneider, Jelmer J. Renema, Sven Hofling, Chao-Yang Lu, Jian-Wei Pan. Phys. Rev. Lett., 123 (25), 250503 (2019). DOI: 10.1103/PhysRevLett.123.250503
- Lazernye tekhnologii [Electronic source]. URL: https://online.mephi.ru/courses/new_technologies/laser/ data/lecture/9/p5.html
- Opticheskoe volokno Corning SMF-28 Ultra. Opisanie izdeliya [Electronic source]. URL: https://www.ssd.ru/upload/iblock/214/smf_28ultra.pdf
- N.V. Nikonorov, S.M. Shandarov Volnovodnaya fotonika. Uchebnoe posobie, kurs lektsii. (ITMO, SPb, 2008) (in Russian)
- Ultra-High NA Single-Mode Fibers [Electronic source]. URL: https://www.coherent.com/resources/datasheet/ components-and-accessories/specialty-optical-fibers/uhna3_spec_202011122126.pdf
- S. Preble. UHNA Fiber --- Efficient Coupling to Silicon Waveguides. Application Note NuAPP-3 [Electronic source]. URL: https://www.coherent.com/resources/application- note/components-and-accessories/specialty-optical-fibers/uhna-fiber-efficient-coupling-to-silicon-waveguides.pdf
- S. Chuang. Physics of Photonic Devices (John Wiley \& Sons, NJ, 2009)
- C. Kopp, S. Bernabe, B.B. Bakir, J.M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann. IEEE J. Sel. Top. Quant., 17 (3), 498-509 (2011). DOI: 10.1109/JSTQE.2010.2071855
- G.T. Reed, A.P. Knights. Silicon Photonics: An Introduction (John Wiley \& Sons, NJ, 2004)
- Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, C. Peucheret. Opt. Express, 21 (8), 10376-10382 (2013). DOI: 10.1364/OE.21.010376
- T. Ramadan, R.M. Osgood. J. Lightwave Technol., 16 (2), 277 (1998)
- P. Suchoski, R. Ramaswamy. IEEE J. Sel. Top. Quant., 23 (2), 205-211 (1987). DOI: 10.1109/JQE.1987.1073307
- S.J. Hettrick, J. Wang, C. Li, J.S. Wilkinson, D.P. Shepherd. J. Lightwave Technol. 22 (3), 845-849 (2004). DOI: 10.1109/JLT.2004.824548
- X. Mu, S. Wu, L. Cheng, X. Tu, H. Fu. OSA Technical Digest (Frontiers in Optics + Laser Science APS/DLS) (Optica Publishing Group, Washington, 2019). DOI: 10.1364/FIO.2019.JTu3A.66
- P. Cheben, D.X. Xu, S. Janz, A. Densmore. Opt. Express, 14 (11), 4695-4702 (2006). DOI: 10.1364/OE.14.004695
- M.J. Picard, C. Latrasse, C. Larouche, Y. Painchaud, M. Poulin, F. Pelletier, M. Guy. Proc. SPIE OPTO, 9752, 132-138 (2016). DOI: 10.1117/12.2208629
- J.K. Doylend, A.P. Knights. IEEE J. Selected Topics in Quant. Electron., 12 (6), 1363-1370 (2006). DOI: 10.1109/JSTQE.2006.884409
- J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, G. Kim. J. Lightwave Technol., 25 (8), 2236-2243 (2007). DOI: 10.1109/JLT.2007.899792
- M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, C. Manolatou. J. Vacuum Sci. Technol. B, 21 (6), 2897-2902 (2003). DOI: 10.1116/1.1625967
- Q. Fang, T.S. Liow, J. Song, C. Tan, M. Yu, G. Lo, Kwong, D.L. Opt. Express, 18 (8), 7763-7769 (2010). DOI: 10.1364/OE.18.007763
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.