Coupling efficiency of single mode fiber with photonic integrated circuit based on Si3N4
Ivashentseva I. V.1,2, Tretyakov I. V. 3, Kaurova N. S.1, Golikov A. D.1, Goltsman G. N.1
1Moscow Pedagogical State University, Moscow, Russia
2National Research University Higher School of Economics, Moscow, Russia
3Astro Space Center of P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
Email: irinivas22@yandex.ru, ivantretykov@mail.ru

PDF
This work is devoted to edge coupling of optical fibres with waveguides of Si3N4-based photonic integrated circuits. At the edge coupling splicing of single-mode optical fibre with high numerical aperture fibre was utilised to reduce the mode field diameter of optical fibre, and for photonic integrated circuit, a field mode converter based on inverse linear taper was employ. The inverse linear taper is a trapezoidal prism which is in contact with a wider part the waveguide and narrowing to 0.3 μm to the ends of the crystal of the photonic integrated circuit, the height of the trapezium lying at the base of this prism is 300 μm. Experimentally demonstrated the possibility to reduce the coupling loss to 0.7 dB per edge. Keywords: Single-mode fibre, high numerical aperture fibre, inverse linear taper, photonic integrated circuit, edge coupling.
  1. X. Mu, S. Wu, L. Cheng, H.Y. Fu. Appl. Sci., 10 (4), 1538 (2020). DOI: 10.3390/app10041538
  2. C. Sparrow, E.Marti n-Lopez, N. Maraviglia, A. Neville, C. Harrold, J. Carolan, Y.N. Joglekar, T. Hashimoto, N. Matsuda, J.L. O'Brien, D.P. Tew, A. Laing. Nature, 557, 660-667 (2018). DOI: 10.1038/s41586-018-0152-9
  3. G.R. Steinbrecher, J.P. Olson, D. Englund, J. Carolan. npj Quantum Inf 5, 60 (2019). DOI: 10.1038/s41534-019-0174-7
  4. H. Choi, M. Pant, S. Guha, D. Englund. npj Quantum Inf 5, 104 (2019). DOI: 10.1038/s41534-019-0215-2
  5. T.L. Koch, U. Koren. IEEE J. Quant. Electron., 27 (3), 641-653 (1991). DOI: 10.1109/3.81373
  6. D.J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, C. Roeloffzen. Proc. IEEE, 106 (12), 2209-2231 (2018). DOI: 10.1109/JPROC.2018.2861576
  7. C.R. Doerr. Frontiers Phys., 3, 37 (2015). DOI: 10.3389/fphy.2015.00037
  8. M.A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, J. Bowers. Appl. Sci., 8 (7), 1139 (2018). DOI: 10.3390/app8071139
  9. Hui Wang, Jian Qin, Xing Ding, Ming-Cheng Chen, Si Chen, Xiang You, Yu-Ming He, Xiao Jiang, L. You, Z. Wang, C. Schneider, Jelmer J. Renema, Sven Hofling, Chao-Yang Lu, Jian-Wei Pan. Phys. Rev. Lett., 123 (25), 250503 (2019). DOI: 10.1103/PhysRevLett.123.250503
  10. Lazernye tekhnologii [Electronic source]. URL: https://online.mephi.ru/courses/new_technologies/laser/ data/lecture/9/p5.html
  11. Opticheskoe volokno Corning SMF-28 Ultra. Opisanie izdeliya [Electronic source]. URL: https://www.ssd.ru/upload/iblock/214/smf_28ultra.pdf
  12. N.V. Nikonorov, S.M. Shandarov Volnovodnaya fotonika. Uchebnoe posobie, kurs lektsii. (ITMO, SPb, 2008) (in Russian)
  13. Ultra-High NA Single-Mode Fibers [Electronic source]. URL: https://www.coherent.com/resources/datasheet/ components-and-accessories/specialty-optical-fibers/uhna3_spec_202011122126.pdf
  14. S. Preble. UHNA Fiber --- Efficient Coupling to Silicon Waveguides. Application Note NuAPP-3 [Electronic source]. URL: https://www.coherent.com/resources/application- note/components-and-accessories/specialty-optical-fibers/uhna-fiber-efficient-coupling-to-silicon-waveguides.pdf
  15. S. Chuang. Physics of Photonic Devices (John Wiley \& Sons, NJ, 2009)
  16. C. Kopp, S. Bernabe, B.B. Bakir, J.M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann. IEEE J. Sel. Top. Quant., 17 (3), 498-509 (2011). DOI: 10.1109/JSTQE.2010.2071855
  17. G.T. Reed, A.P. Knights. Silicon Photonics: An Introduction (John Wiley \& Sons, NJ, 2004)
  18. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, C. Peucheret. Opt. Express, 21 (8), 10376-10382 (2013). DOI: 10.1364/OE.21.010376
  19. T. Ramadan, R.M. Osgood. J. Lightwave Technol., 16 (2), 277 (1998)
  20. P. Suchoski, R. Ramaswamy. IEEE J. Sel. Top. Quant., 23 (2), 205-211 (1987). DOI: 10.1109/JQE.1987.1073307
  21. S.J. Hettrick, J. Wang, C. Li, J.S. Wilkinson, D.P. Shepherd. J. Lightwave Technol. 22 (3), 845-849 (2004). DOI: 10.1109/JLT.2004.824548
  22. X. Mu, S. Wu, L. Cheng, X. Tu, H. Fu. OSA Technical Digest (Frontiers in Optics + Laser Science APS/DLS) (Optica Publishing Group, Washington, 2019). DOI: 10.1364/FIO.2019.JTu3A.66
  23. P. Cheben, D.X. Xu, S. Janz, A. Densmore. Opt. Express, 14 (11), 4695-4702 (2006). DOI: 10.1364/OE.14.004695
  24. M.J. Picard, C. Latrasse, C. Larouche, Y. Painchaud, M. Poulin, F. Pelletier, M. Guy. Proc. SPIE OPTO, 9752, 132-138 (2016). DOI: 10.1117/12.2208629
  25. J.K. Doylend, A.P. Knights. IEEE J. Selected Topics in Quant. Electron., 12 (6), 1363-1370 (2006). DOI: 10.1109/JSTQE.2006.884409
  26. J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, G. Kim. J. Lightwave Technol., 25 (8), 2236-2243 (2007). DOI: 10.1109/JLT.2007.899792
  27. M. Fritze, J. Knecht, C. Bozler, C. Keast, J. Fijol, S. Jacobson, P. Keating, J. LeBlanc, E. Fike, B. Kessler, M. Frish, C. Manolatou. J. Vacuum Sci. Technol. B, 21 (6), 2897-2902 (2003). DOI: 10.1116/1.1625967
  28. Q. Fang, T.S. Liow, J. Song, C. Tan, M. Yu, G. Lo, Kwong, D.L. Opt. Express, 18 (8), 7763-7769 (2010). DOI: 10.1364/OE.18.007763

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru