Photoinduced change in diffusion coefficient as revealed by holographic relaxometry and laser scanning microscopy
Borodina L. N. 1, Borisov V. N. 1, Veniaminov A. V. 1
1International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
Email: lnborodina@itmo.ru, borisov.itmo@gmail.com, avveniaminov@itmo.ru

PDF
We show that not only holographic relaxation, but also luminescence recovery studies of diffusion based on formation of photoinduced optical inhomogeneity and subsequent monitoring its relaxation reveal changes in the diffusion coefficients caused by exposure. This makes it possible to study photoinduced aggregation, destruction, and release of particles. Holographic relaxometry and modified fluorescence recovery after photobleaching techniques are outlined. Experimental examples of the luminescence recovery technique applied to colloid solutions of quantum dots are provided that cannot be described by simple Gaussian profile model. Possible variants of relaxation curves and spatial luminescence profiles reflecting photoinduced changes in diffusion mobility are simulated. Comparative study of diffusion in a model system using the two techniques is fulfilled. Keywords: photoinduced grating relaxation, fluorescence recovery after photobleaching, photoinduced change in diffusion coefficient, confocal microscopy, supplementary gratings, camphoroquinone, quantum dots.
  1. I.V. Martynenko, A.P. Litvin, F. Purcell-Milton, A.V. Baranov, A.V. Fedorov, Y.K. Gun'ko. J. Mater. Chem. B, 5, 6701-6727 (2017). DOI: 10.1039/C7TB01425B
  2. A.L. Efros, L.E. Brus. ACS Nano, 15, 6192-6210 (2021). DOI: 10.1021/acsnano.1c01399
  3. Nanocrystal quantum dots, ed. by V.I. Klimov (CRC Press, 2017). DOI: 10.1201/9781420079272
  4. T.O. Oskolkova, A.A. Matiushkina, L.N. Borodina, E.S. Smirnova, A.I. Dadadzhanova, F.A. Sewid, A.V. Veniaminov, E.O. Moiseeva, A.O. Orlova. ChemNanoMat, 10, e202300469 (2024). DOI: 10.1002/CNMA.202300469
  5. A.K. Yetisen, I. Naydenova, F. Da Cruz Vasconcellos, J. Blyth, C.R. Lowe. Chem. Rev., 114, 10654-10696 (2014). DOI: 10.1021/cr500116a
  6. K.A. Altammar. Front. Microbiol., 14, 1155622 (2023). DOI: 10.3389/fmicb.2023.1155622
  7. J.T. Sheridan, R.K. Kostuk, A.F. Gil, Y. Wang, W. Lu, H. Zhong, Y. Tomita, C. Neipp, J. Frances, S. Gallego, I. Pascual, V. Marinova, S.H. Lin, K.Y. Hsu, F. Bruder, S. Hansen, C. Manecke, R. Meisenheimer, C. Rewitz, T. Rolle, S. Odinokov, O. Matoba, M. Kumar, X. Quan, Y. Awatsuji, P.W. Wachulak, A.V. Gorelaya, A.A. Sevryugin, E.V. Shalymov, V.Yu. Venediktov, R. Chmelik, M.A. Ferrara, G. Coppola, A. Marquez, A. Belendez, W. Yang, R. Yuste, A. Bianco, A. Zanutta, C. Falldorf, J.J. Healy, X. Fan, B.M. Hennelly, I. Zhurminsky, M. Schnieper, R. Ferrini, S. Fricke, G. Situ, H. Wang, A.S. Abdurashitov, V.V. Tuchin, N.V. Petrov, T. Nomura, D.R. Morim, K. Saravanamuttu. J. Optics, 22, 123002 (2020). DOI: 10.1088/2040-8986/abb3a4
  8. Dynamic Light Scattering. Applications of Photon Correlation Spectroscopy, ed. by R. Pecora (Plenum Press, New York and London, 1985)
  9. E. Haustein, P. Schwille. In: Soft Matter Characterization, ed. by R. Pecora (Springer, 2008), p. 637-675. DOI: 10.1007/978-1-4020-4465-6_11
  10. W. Schartl. In: Soft Matter Characterization, ed. by R. Pecora (Springer, 2008), p. 678-701. DOI: 10.1007/978-1-4020-4465-6_12
  11. A.A. Moud. ACS Biomater. Sci. Eng., 8, 1028-1048 (2022). DOI: 10.1021/acsbiomaterials.1c01422 12
  12. D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller. Nano Lett., 1, 207-211 (2001). DOI: 10.1021/nl0155126
  13. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi. J. Phys. Chem. B, 101, 9463-9475 (1997). DOI: 10.1021/jp971091y
  14. L. Borodina, V. Borisov, K. Annas, A. Dubavik, A. Veniaminov, A. Orlova. Materials, 15, 8195 (2022). DOI: 10.3390/MA15228195
  15. A.V. Veniaminov, H. Sillescu. Chem. Phys. Lett., 303, 499-504 (1999). DOI: 10.1016/S0009-2614(99)00257-2
  16. E.I. Shtyrkov. In book.: Problemy golographii (M., 1973) (in Russian), v. 2, p. 258-262
  17. A.V. Veniaminov, G.I. Lashkov, O.B. Ratner, N.S. Shelekhov, O.V. Bandyuk. Opt. Spectrosc., 60, 87-91 (1986)
  18. A.V. Veniaminov, E. Bartsch, Opt. Spectrosc, 101 (2) 290-298 (2006). DOI: 10.1134/S0030400X06080182
  19. X.R. Zhu, D.J. McGraw, J.M. Harris. Anal. Chem., 64, (1992). DOI: 10.1021/ac00038a716
  20. C.S. Johnson. J. Chem. Phys., 81, 5384-5388 (1984). DOI: 10.1063/1.447682
  21. J. Zhang, C.H. Wang. J. Phys. Chem., 90, 2296-2297 (1986). DOI: 10.1021/j100402a006
  22. A.L. Tolstik, E.V. Ivakin, I.G. Dadenkov. Nonlinear Phenomena in Complex Systems, 26 (3), 73-283 (2023). DOI: 10.5281/zenodo.10034399
  23. J.T. Fourkas, M.D. Fayer. Acc. Chem. Res., 25, 227-233 (1992). DOI: 10.1021/AR00017A004
  24. P. Bartolini, A. Taschin, R. Eramo, R. Torre. In: Time-Resolved Spectroscopy in Complex Liquids (Springer, 2007), p. 129-184. DOI: 10.1007/978-0-387-25558-3_3
  25. H.J. Eichler. In: Festkorperprobleme, ed. by J. Treusch (Springer, Berlin, Heidelberg, 1978), v. 18, p. 241-263. DOI: 10.1007/BFb0107784
  26. S. Park, J. Sung, H. Kim, T. Chang. J. Phys. Chem., 95, 7121-7124 (1991). DOI: 10.1021/j100172a004
  27. Y. Tomita, E. Hata, K. Momose, S. Takayama, X. Liu, K. Chikama, J. Klepp, C. Pruner, M. Fally. J. Mod. Opt., 63, S1-S31 (2016). DOI: 10.1080/09500340.2016.1143534
  28. T.K. Gaylord, R. Magnusson. JOSA, 67, 1165-1170 (1977). DOI: 10.1364/JOSA.67.001165
  29. E. Bartsch, T. Jahr, A. Veniaminov, H. Sillescu. J. Phys. France IV, 10, Pr7-289-Pr7-293 (2000). DOI: 10.1051/jp4:2000758
  30. A. Veniaminov, T. Jahr, H. Sillescu, E. Bartsch. Macromolecules, 35, 808-819 (2002). DOI: 10.1021/ma010531n
  31. M. Carnell, A. Macmillan, R. Whan. Methods Mol. Biol., 1232, 255-271 (2015). DOI: 10.1007/978-1-4939-1752-5_18
  32. N. Loren, J. Hagman, J.K. Jonasson, H. Deschout, D. Bernin, F. Cella-Zanacchi, A. Diaspro, J.G. McNally, M. Ameloot, N. Smisdom, M. Nyden, A.M. Hermansson, M. Rudemo, K. Braeckmans. Quart. Rev. Biophys., 48, 323-387 (2015). DOI: 10.1017/S0033583515000013
  33. S. Seiffert, W. Oppermann. J. Microscopy, 220, 20-30 (2005). DOI: 10.1111/j.1365-2818.2005.01512.x
  34. Y. Cheng, R.K. Prud'homme, J.L. Thomas. Macromolecules, 35, 8111-8121 (2002). DOI: 10.1021/ma0107758
  35. U. Kubitscheck, P. Wedekind, R. Peters. Biophys. J., 67, 948-956 (1994). DOI: 10.1016/S0006-3495(94)80596-X
  36. K. Hashlamoun, Z. Abusara, A. Ramirez-Torres, A. Grillo, W. Herzog, S. Federico. Biomech. Model. Mechanobiol., 19, 2397-2412 (2020). DOI: 10.1007/s10237-020-01346-z
  37. A. Einstein, M. Smolukhovsky. Braunovskoye dvizhenie (ONTI, 1934)
  38. L.N. Borodina. In book.: Bulletin of abstracts of SRS of the University's graduates (ITMO University, SPb., 2022), v. 1, p. 358-363
  39. L. Borodina, A. Matyushkina, I. Vovk, A. Dubavik, A. Veniaminov, A. Orlova. In: International Symposium Fundamentals of Laser Assisted Micro- \& Nanotechnologies (FLAMN-22) (ITMO, SPb, 2022), p. 16
  40. O.V. Chashchikhin, M.F. Budyka. J. Photochem. Photobiol. A Chem., 343, 72-76 (2017). DOI: 10.1016/j.jphotochem.2017.04.028
  41. C.H. Wang, J.L. Xia. Macromolecules, 21, 3519-3523 (1988). DOI: 10.1021/ma00190a031
  42. A.V. Veniaminov, U.V. Mahilny. Opt. Spectrosc., 115 (6), 906-930 (2013). DOI: 10.1134/S0030400X13120199
  43. G.I. Hauser, S. Seiffert, W. Oppermann. J. Microsc., 230, 353-362 (2008). DOI: 10.1111/j.1365-2818.2008.01993.x
  44. F. Stickel, E.W. Fischer, R. Richert. J. Chem. Phys., 104, 2043-2055 (1996). DOI: 10.1063/1.470961
  45. G. Heuberger, H. Sillescu. J. Phys. Chem., 100, 15255-15260 (1996). DOI: 10.1021/jp960968a

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru