Photoinduced change in diffusion coefficient as revealed by holographic relaxometry and laser scanning microscopy
Borodina L. N.
1, Borisov V. N.
1, Veniaminov A. V.
11International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
Email: lnborodina@itmo.ru, borisov.itmo@gmail.com, avveniaminov@itmo.ru
We show that not only holographic relaxation, but also luminescence recovery studies of diffusion based on formation of photoinduced optical inhomogeneity and subsequent monitoring its relaxation reveal changes in the diffusion coefficients caused by exposure. This makes it possible to study photoinduced aggregation, destruction, and release of particles. Holographic relaxometry and modified fluorescence recovery after photobleaching techniques are outlined. Experimental examples of the luminescence recovery technique applied to colloid solutions of quantum dots are provided that cannot be described by simple Gaussian profile model. Possible variants of relaxation curves and spatial luminescence profiles reflecting photoinduced changes in diffusion mobility are simulated. Comparative study of diffusion in a model system using the two techniques is fulfilled. Keywords: photoinduced grating relaxation, fluorescence recovery after photobleaching, photoinduced change in diffusion coefficient, confocal microscopy, supplementary gratings, camphoroquinone, quantum dots.
- I.V. Martynenko, A.P. Litvin, F. Purcell-Milton, A.V. Baranov, A.V. Fedorov, Y.K. Gun'ko. J. Mater. Chem. B, 5, 6701-6727 (2017). DOI: 10.1039/C7TB01425B
- A.L. Efros, L.E. Brus. ACS Nano, 15, 6192-6210 (2021). DOI: 10.1021/acsnano.1c01399
- Nanocrystal quantum dots, ed. by V.I. Klimov (CRC Press, 2017). DOI: 10.1201/9781420079272
- T.O. Oskolkova, A.A. Matiushkina, L.N. Borodina, E.S. Smirnova, A.I. Dadadzhanova, F.A. Sewid, A.V. Veniaminov, E.O. Moiseeva, A.O. Orlova. ChemNanoMat, 10, e202300469 (2024). DOI: 10.1002/CNMA.202300469
- A.K. Yetisen, I. Naydenova, F. Da Cruz Vasconcellos, J. Blyth, C.R. Lowe. Chem. Rev., 114, 10654-10696 (2014). DOI: 10.1021/cr500116a
- K.A. Altammar. Front. Microbiol., 14, 1155622 (2023). DOI: 10.3389/fmicb.2023.1155622
- J.T. Sheridan, R.K. Kostuk, A.F. Gil, Y. Wang, W. Lu, H. Zhong, Y. Tomita, C. Neipp, J. Frances, S. Gallego, I. Pascual, V. Marinova, S.H. Lin, K.Y. Hsu, F. Bruder, S. Hansen, C. Manecke, R. Meisenheimer, C. Rewitz, T. Rolle, S. Odinokov, O. Matoba, M. Kumar, X. Quan, Y. Awatsuji, P.W. Wachulak, A.V. Gorelaya, A.A. Sevryugin, E.V. Shalymov, V.Yu. Venediktov, R. Chmelik, M.A. Ferrara, G. Coppola, A. Marquez, A. Belendez, W. Yang, R. Yuste, A. Bianco, A. Zanutta, C. Falldorf, J.J. Healy, X. Fan, B.M. Hennelly, I. Zhurminsky, M. Schnieper, R. Ferrini, S. Fricke, G. Situ, H. Wang, A.S. Abdurashitov, V.V. Tuchin, N.V. Petrov, T. Nomura, D.R. Morim, K. Saravanamuttu. J. Optics, 22, 123002 (2020). DOI: 10.1088/2040-8986/abb3a4
- Dynamic Light Scattering. Applications of Photon Correlation Spectroscopy, ed. by R. Pecora (Plenum Press, New York and London, 1985)
- E. Haustein, P. Schwille. In: Soft Matter Characterization, ed. by R. Pecora (Springer, 2008), p. 637-675. DOI: 10.1007/978-1-4020-4465-6_11
- W. Schartl. In: Soft Matter Characterization, ed. by R. Pecora (Springer, 2008), p. 678-701. DOI: 10.1007/978-1-4020-4465-6_12
- A.A. Moud. ACS Biomater. Sci. Eng., 8, 1028-1048 (2022). DOI: 10.1021/acsbiomaterials.1c01422 12
- D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller. Nano Lett., 1, 207-211 (2001). DOI: 10.1021/nl0155126
- B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi. J. Phys. Chem. B, 101, 9463-9475 (1997). DOI: 10.1021/jp971091y
- L. Borodina, V. Borisov, K. Annas, A. Dubavik, A. Veniaminov, A. Orlova. Materials, 15, 8195 (2022). DOI: 10.3390/MA15228195
- A.V. Veniaminov, H. Sillescu. Chem. Phys. Lett., 303, 499-504 (1999). DOI: 10.1016/S0009-2614(99)00257-2
- E.I. Shtyrkov. In book.: Problemy golographii (M., 1973) (in Russian), v. 2, p. 258-262
- A.V. Veniaminov, G.I. Lashkov, O.B. Ratner, N.S. Shelekhov, O.V. Bandyuk. Opt. Spectrosc., 60, 87-91 (1986)
- A.V. Veniaminov, E. Bartsch, Opt. Spectrosc, 101 (2) 290-298 (2006). DOI: 10.1134/S0030400X06080182
- X.R. Zhu, D.J. McGraw, J.M. Harris. Anal. Chem., 64, (1992). DOI: 10.1021/ac00038a716
- C.S. Johnson. J. Chem. Phys., 81, 5384-5388 (1984). DOI: 10.1063/1.447682
- J. Zhang, C.H. Wang. J. Phys. Chem., 90, 2296-2297 (1986). DOI: 10.1021/j100402a006
- A.L. Tolstik, E.V. Ivakin, I.G. Dadenkov. Nonlinear Phenomena in Complex Systems, 26 (3), 73-283 (2023). DOI: 10.5281/zenodo.10034399
- J.T. Fourkas, M.D. Fayer. Acc. Chem. Res., 25, 227-233 (1992). DOI: 10.1021/AR00017A004
- P. Bartolini, A. Taschin, R. Eramo, R. Torre. In: Time-Resolved Spectroscopy in Complex Liquids (Springer, 2007), p. 129-184. DOI: 10.1007/978-0-387-25558-3_3
- H.J. Eichler. In: Festkorperprobleme, ed. by J. Treusch (Springer, Berlin, Heidelberg, 1978), v. 18, p. 241-263. DOI: 10.1007/BFb0107784
- S. Park, J. Sung, H. Kim, T. Chang. J. Phys. Chem., 95, 7121-7124 (1991). DOI: 10.1021/j100172a004
- Y. Tomita, E. Hata, K. Momose, S. Takayama, X. Liu, K. Chikama, J. Klepp, C. Pruner, M. Fally. J. Mod. Opt., 63, S1-S31 (2016). DOI: 10.1080/09500340.2016.1143534
- T.K. Gaylord, R. Magnusson. JOSA, 67, 1165-1170 (1977). DOI: 10.1364/JOSA.67.001165
- E. Bartsch, T. Jahr, A. Veniaminov, H. Sillescu. J. Phys. France IV, 10, Pr7-289-Pr7-293 (2000). DOI: 10.1051/jp4:2000758
- A. Veniaminov, T. Jahr, H. Sillescu, E. Bartsch. Macromolecules, 35, 808-819 (2002). DOI: 10.1021/ma010531n
- M. Carnell, A. Macmillan, R. Whan. Methods Mol. Biol., 1232, 255-271 (2015). DOI: 10.1007/978-1-4939-1752-5_18
- N. Loren, J. Hagman, J.K. Jonasson, H. Deschout, D. Bernin, F. Cella-Zanacchi, A. Diaspro, J.G. McNally, M. Ameloot, N. Smisdom, M. Nyden, A.M. Hermansson, M. Rudemo, K. Braeckmans. Quart. Rev. Biophys., 48, 323-387 (2015). DOI: 10.1017/S0033583515000013
- S. Seiffert, W. Oppermann. J. Microscopy, 220, 20-30 (2005). DOI: 10.1111/j.1365-2818.2005.01512.x
- Y. Cheng, R.K. Prud'homme, J.L. Thomas. Macromolecules, 35, 8111-8121 (2002). DOI: 10.1021/ma0107758
- U. Kubitscheck, P. Wedekind, R. Peters. Biophys. J., 67, 948-956 (1994). DOI: 10.1016/S0006-3495(94)80596-X
- K. Hashlamoun, Z. Abusara, A. Ramirez-Torres, A. Grillo, W. Herzog, S. Federico. Biomech. Model. Mechanobiol., 19, 2397-2412 (2020). DOI: 10.1007/s10237-020-01346-z
- A. Einstein, M. Smolukhovsky. Braunovskoye dvizhenie (ONTI, 1934)
- L.N. Borodina. In book.: Bulletin of abstracts of SRS of the University's graduates (ITMO University, SPb., 2022), v. 1, p. 358-363
- L. Borodina, A. Matyushkina, I. Vovk, A. Dubavik, A. Veniaminov, A. Orlova. In: International Symposium Fundamentals of Laser Assisted Micro- \& Nanotechnologies (FLAMN-22) (ITMO, SPb, 2022), p. 16
- O.V. Chashchikhin, M.F. Budyka. J. Photochem. Photobiol. A Chem., 343, 72-76 (2017). DOI: 10.1016/j.jphotochem.2017.04.028
- C.H. Wang, J.L. Xia. Macromolecules, 21, 3519-3523 (1988). DOI: 10.1021/ma00190a031
- A.V. Veniaminov, U.V. Mahilny. Opt. Spectrosc., 115 (6), 906-930 (2013). DOI: 10.1134/S0030400X13120199
- G.I. Hauser, S. Seiffert, W. Oppermann. J. Microsc., 230, 353-362 (2008). DOI: 10.1111/j.1365-2818.2008.01993.x
- F. Stickel, E.W. Fischer, R. Richert. J. Chem. Phys., 104, 2043-2055 (1996). DOI: 10.1063/1.470961
- G. Heuberger, H. Sillescu. J. Phys. Chem., 100, 15255-15260 (1996). DOI: 10.1021/jp960968a
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.