Study of spectral dependence of fluorescence lifetime of acridine orange in one-dimensional photonic crystals
Strokova Yu. A. 1, Svyakhovsky S. E.1, Saletsky A. M.1
1Department of Physics, Lomonosov Moscow State University, Moscow, Russia
Email: sam@physics.msu.ru

PDF
The spectral dependences of fluorescence intensity I and average lifetime of excited state tau of acridine orange (AO) molecules embedded in one-dimensional photonic crystals (PC) at different radiation detection angles were studied. The density of electromagnetic modes of PC was calculated using the scattering matrix method. The spectral characteristics of AO fluorescence in PC samples and samples with permanent pores (porous silicon) were compared, as well as with the calculated dependences of the relative density of electromagnetic modes. The kinetics of AO fluorescence decay in PC were studied at different wavelengths, which were approximated by two exponentials. It was found that short-term luminescence is practically independent of the wavelength, while for long-term luminescence a non-monotonic dependence on λ is observed with a minimum corresponding to the photonic band gap. The Purcell factor was estimated for the studied systems. It was proven that the experimentally obtained dependences of the energy and time characteristics of AO fluorescence on λ are due to a change in the density of photonic states. Keywords: photonic crystals, photonic band gap, density of electromagnetic modes, acridine orange, fluorescence spectra, fluorescence lifetime.
  1. D.-E. Zacharioudaki, I. Fitilis, M. Kotti. Molecules, 27, 4801 (2022). DOI: 10.3390/ molecules27154801
  2. W.L. Barnes. J. Mod. Opt., 45, 661 (1998). DOI: 10.1080/09500349808230614
  3. D. Semeniak, D.F. Cruz, A. Chilkoti, M.H. Mikkelsen. Adv. Mater., 35, 2107986 (2023). DOI: 10.1002/adma.202107986
  4. A.D. Dmitriev, A.M. Saletskii. Opt. Spectrosc., 127 (2) 265 (2019). DOI: 10.1134/S0030400X19080095
  5. T. Reynolds, N. Riesen, Al. Meldrum, X. Fan, J.M.M. Hall, T.M. Monro, A. Fran cois. Laser Photonics Rev., 11 (2), 1600265 (2017). DOI: 10.1002/lpor.201600265
  6. S. Wu, H. Xia, J. Xu, X. Sun, X. Liu. Adv. Mater., 30 (47), 1803362 (2018). DOI: 10.1002/adma.201803362
  7. Yu.A. Strokova, A.M. Saletsky. Opt. Spectrosc., 130 (12), 1545 (2022). DOI: 10.21883/EOS.2022.12.55240.3859-22
  8. D.S. Sundar, T. Arun, R. Raju, K.S. Kumar, T. Sridarshini. Photonic Crystal and Its Applications for Next Generation Systems (Springer Nature, Singapore, 2023). DOI: 10/1007/978-981-99-2548-3
  9. P.S. Emeliantsev, N.I. Pyshkov, S.E. Svyakhovskiy. JETP Letters, 117 (11), 821 (2023). DOI: 10.1134/S002136402360129X
  10. S.E. Svyakhovskiy. JETP Letters, 118 (1), 26(2023). DOI: 10.1134/S0021364023601641
  11. M. Gryga, D. Ciprian, L. Gembalova, P. Hlubina. Crystals, 13, 93 (2023). DOI: 10.3390/cryst13010093
  12. S. Saravanan, R.S. Dubey. Nanosystems: Physics, Chemistry, Mathematics, 11 (2), 189 (2020). DOI: 10.17586/2220-8054-2020-11-2-189-194
  13. Y. Xiong, S. Shepherd, J. Tibbs, A. Bacon, W. Liu, L.D. Akin, T. Ayupova, S. Bhaskar, B.T. Cunningham. Micromachines, 14, 668 (2023). DOI: 10.3390/mi14030668
  14. N. Zhdanova, A. Pakhomov, S. Rodionov, Yu. Strokova, S. Svyakhovskiy, A. Saletskii. Opt. and spectr., 128 (7), 909 (2020). DOI: 10.21883/OS.2020.07.49561.47-20 [N. Zhdanova, A. Pakhomov, S. Rodionov, Yu. Strokova, S. Svyakhovskiy, A. Saletskii. Opt. Spectrosc., 128, 915 (2020). DOI: 10.1134/S0030400X20070267]
  15. Yu.A. Strokova, S.E. Svyakhovskii, A.M. Saletsky. Opt. Spectrosc., 125 (2), 208 (2018). DOI: 10.1134/S0030400X18080222
  16. Yu.A. Strokova, S.A. Svyakhovskiy, A.M. Saletsky. J. Appl. Spectrosc., 85 (6), 1013 (2019). DOI: 10.1007/s10812-019-00752-1
  17. H. Megahd, P. Lova, S. Sardar, C. D'Andrea, A. Lanfranchi, B. Koszarna, M. Patrini, D.T. Gryko, D. Comoretto. ACS Omega, 7, 15499 (2022). DOI: 10.1021/acsomega.2c00167
  18. H. Megahd, M.V. Brito, A. Lanfranchi, P. Stagnaro, P. Lova, D. Comoretto. Mater. Chem. Front., 6, 2413 (2022). DOI: 10.1039/d2qm00313a
  19. Kyu-Ri Choi, S. Li, D. H. Park, B. C. Joo, H. Lee, E.S.H. Kang, S.N. Chormaic, J.W. Wu, A. D'Aleo, Y.U. Lee. Nanophotonics, 13 (7), 1033 (2024). DOI: 10.1515/nanoph-2023-0631
  20. D. Dovzhenko, I. Vartynov, P. Samokhvalov, E. Osipov, M. Lednev, A. Chistyakov, A. Karaulov, I. Nabiev. Optics Express., 28 (15), 22705 (2020). DOI: 10.1364/oe.401197
  21. S.E. Svyakhovskiy, A.I. Maydykovsky, T.V. Murzina. J. Appl. Phys., 112 (1), 013106 (2012). DOI: 10.1063/1.4732087
  22. B. Fornaciari, M.S. Juvenal, W.K. Martins, H.C. Junqueira, M.S. Baptista. Photochem., 3, 209 (2023). DOI: 10.3390/photochem3020014
  23. A. Luce, A. Mahdavi, F. Marquardt, H. Wankerl. JOSA A, 39 (6), 1007 (2022). DOI: 10.1364/JOSAA.450928
  24. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade. Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, 2011).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru