Effects of degenerate light diffraction on a periodic domain structure in 1% MgO : LiTaO3 in the temperature range of 30-110oC
Dubikov A. V. 1, Savchenkov E. N. 1, Belskaya D. E. 1, Shandarov S. M. 1, Burimov N. I.1, Smirnov S. V. 1, Akhmatkhanov A. R. 2, Chuvakova M. A. 2, Shur V. Ja. 2
1Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
2Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
Email: rossler@mail.ru
The effects of degenerate anisotropic diffraction were observed for the first time on a periodic regular domain structure (RDS) formed in it with non-inclined Y-type walls for a probing beam with a wavelength of λ=632.8 nm at temperatures below and above the isotropic point in a stoichiometric crystal of 1% MgO : LiTaO3. The use of experimentally measured maximum efficiency values for two-fold degenerate diffraction processes with an unusual and ordinary probing beam made it possible to obtain an estimate of |f1132+f3131|~18 V for the flexoelectric tensor components of the studied lithium tantalate sample. The temperature of the isotropic point T_i=69.31oC was determined and the temperature dependences of birefringence δ n(T) in the range from 30 to 110oC were approximated from the analysis of experimental temperature dependences for the transmitted power through the 1% MgO : LiTaO3 crystal and a crossed analyzer of a probing beam with a polarization vector oriented at an angle of 45o to the Z axis. Keywords: lithium tantalate, degenerate diffraction, isotropic point, flexoelectric tensor component.
- P. Ferrari, S. Grilli, P. DeNatale. Ferroelectric Crystals for Photonic Applications (Springer-Verlag, Berlin-Heidelberg, 2014). DOI: 10.1007/978-3-642-41086-4
- F.J. Kontur, I. Dajani, Y. Lu, R.J. Knize. Optics Express, 15, 12882 (2007). DOI: 10.1364/OE.15.01.012882
- S.P. Kovalev, G.Kh Kitaeva. Pisma v ZhETF 94, 95 (2011) (in Russian). DOI: 10.1134/S0021364011140074
- A.N. Tuchak, G.N. Goltsman, G.Kh. Kitaeva, A.N. Penin, S.V. Seliverstov, M.I. Finkel, A.V. Shepelev, P.V. Yakunin. Pisma v ZhETF 96, 97 (2012) (in Russian). DOI: 10.31857/S1234567820170048
- L.A. Rios, C.E. Minor, N.A. Barboza, R.S. Cudney. Opt. Express, 26, 17591 (2018). DOI: 10.1364/OE.26.017591
- T. Ding, Y. Zheng, X. Chen. Opt. Lett., 44, 1524 (2019). DOI: 10.1364/OL.44.001524
- P.A. Prudkovsky. Pisma v ZhETF, 111 (494) 2020) (in Russian). DOI: 10.31857/S123456782008011X
- P.A. Prudkovsky. Pisma v ZhETF, 116 (667) 2022) (in Russian). DOI: 10.31857/S1234567822220049
- B. Nandy, S.C. Kumar, M. Ebrahim-Zadeh. Optics Express, 30, 16340 (2022). DOI: 10.1364/OE.456023
- W. Yao, L. Deng, Y. Tian, A. Chang, P. Wang, J. Chen, H. Tan, J. Gao. Optics Continuum, 1, 547 (2022). DOI: 10.1364/OPTCON.445930
- I. Mhaouech, V. Coda, G. Montemezzani, M. Chauvet, L. Guilbert. Opt. Lett., 41, 4174 (2016). DOI: 10.1364/OL.41.004174
- S.M. Shandarov, E.N. Savchenkov, M.V. Borodin, A.E. Mandel, A.R. Akhmatkhanov, V.Ya. Shur. Ferroelectrics, 542, 58 (2019). DOI: 10.1080/00150193.2019.1574663
- R.L. Byer, J. Nonlinear. Opt. Phys. Mater., 6, 549 (1997). DOI: 10.1142/S021886359700040X
- C. Baumer, D. Berben, K. Buse, H. Hesse, J. Imbrock. Appl. Phys. Lett., 82, 2248 (2003). DOI: 10.1063/1.1566100
- I. Shoji, Y. Iwamoto, Y. Kagami, Y. Furukawa. Novel Optical Materials and Applications (Optica Publishing Group, 2022), NoTh2E.3. DOI: 10.1364/noma.2022.noth2e.3
- W. Wen-Le, L. You-Wen, Z. Xiao-Qi. Chinese Phys. Lett., 25, 4303 (2008). DOI: 10.1088/0256-307X/25/12/033
- H.H. Lim, S. Kurimura, T. Katagai, I. Shoji. Jap. J. Appl. Phys., 52, 032601 (2013). DOI: 10.7567/JJAP.52.032601
- A.L. Aleksandrinsky, O.A. Gliko, I.I. Naumova, V.I. Pryalkin. Kvantovaya elektronika, 23 (657), 1996 (1996).(in Russian) DOI: 10.1070/QE1996v026n07ABEH000743
- S.M. Shandarov, A.E. Mandel, T.M. Akylbaev, M.V. Borodin, E.N. Savchenkov, S.V. Smirnov, A.R. Akhmatkhanov, V.Ya. Shur. J. of Physics: Conf. Series, 867, 012017 (2017). DOI: 10.1088/1742-6596/867/1/012017
- S.M. Shandarov, A.E. Mandel, E.N. Savchenkov, M.V. Borodin, S.V. Smirnov, A.R. Atmatkhanov, V.Ya. Shur. Golografiya. Nauka i praktika: XVI mezhdunarodnaya konferentsiya HOLOEXPO 2017: Tezisy dokladov (MGTU im. N.E. Baumana, M., 2017), s. 178 (in Russian)
- E.N. Savchenkov, S.M. Shandarov, S.V. Smirnov, A.A. Esin, A.R. Akhmatkhanov, V.Ya. Shur. Pisma v ZhETF, 110 (165) 2019) (in Russian). DOI: 10.1134/S0370274X19150050
- D.A. Gubinskaya, M.A. Fedyanina, E.N. Savchenkov. XX Vserossiisky molodezhny Samarskii konkurs-konferentsiya nauchnykh rabot po optike i lazernoy fizike, posvyashchennyi 100-letiyu so dnya rozhdeniya N.G. Basova: sbornik trudov (Trovant, M., 2022), s. 308 (in Russian)
- E.N. Savchenkov, S.M. Shandarov, A.V. Dubikov, D.E. Kuzmin, M.A. Fedyanina, D.A. Gubinskaya, V.Ya.Shur, A.R. Akhmatkhanov, M.A. Tchyvakova. XI Mezhdunarodnaya konferentsiya po fotonike i informatsionnoy optike. Sbornik nauchnykh trudov (NUYaU MIFI, M., 2022), s. 60 (in Russian)
- V.A. Zhirnov. ZhETF., 35, 1175 (1958). (in Russian)
- E.A. Eliseev, A.N. Morozovska, M.D. Glinchuk, R. Blinc. Phys. Rev. B, 79, 165433 (2009). DOI: 10.1103/PhysRevB.79.165433
- S.M. Shandarov, E.N. Savchenkov, N.I. Burimov, A.R. Akhmatkhanov, V.Ya. Shur. Laser Physics, 30, 025401 (2020). DOI: 10.1088/1555-6611/ab5858
- S.M. Shandarov, A.E. Mandel, S.V. Smirnov, T.M. Akylbaev, M.V. Borodin, A.R. Akhmatkhanov, V.Ya. Shur. Ferroelectrics. 496 (1), 134 (2016). DOI: 10.1080/00150193.2016.1157439
- V.I. Balakshii, V.N. Parygin, L.E. Chirkov. Fizicheskie osnovy akustooptiki (Radio i svyaz', M., 1985) (in Russian)
- J. Xu, R. Stroud. Acousto-optic devices: principles, design, and applications (Wiley, 1992)
- A.W. Warner, D.L. White, W.A. Bonner. J. Appl. Phys., 43, 4489 (1972). DOI: 10.1063/1.1660950
- V.B. Voloshinov, V.N. Parygin, L.E. Tchirkov. Vestn. Mosk.un-ta. Ser. 3. Fiz., astr.., 17, 305 (1976) (in Russian)
- V.Ya. Shur, A.R. Akhmatkhanov, I.S. Baturin. Appl. Phys. Rev., 2, 040604 (2015). DOI: 10.1063/1.4928591
- L.N. Magdich, V.Ya. Molchanov. Akustoopticheskie ustroistva i ikh primenenie (Sovetskoe radio, M., 1978) (in Russian)
- L.P. Avakyants, D.F. Kiselev, N.N. Shchitov. FTT 18, 2129 (1976) (in Russian)
- R.T. Smith, F.S. Welsh. J. Appl. Phys., 42, 2219 (1971)
- A.M. Glass. Phys. Rev., 172, 564 (1968)
- P. Zubko, G. Catalan, A.K. Tagantsev. Annu. Rev. Mater. Res., 43, 387 (2013). DOI: 10.1146/annurev-matsci-071312-121634
- P.V. Yudin, A.K. Tagantsev. Nanotechnology, 24, 432001 (2013). DOI: 10.1088/0957-4484/24/43/432001
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.