Phonon spectrum and elastic properties of Gd2Sn2O7: ab initio calculation
Chernyshev V.A. 1, Glukhov K.I. 1, Zayats P.A. 2
1Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
2M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: vladimir.chernyshev@urfu.ru, glukhovk172@yandex.ru

PDF
The phonon spectrum of gadolinium stannate Gd2Sn2O7 was calculated within the ab initio approach. The frequencies and types of phonon modes active in infrared absorption and Raman scattering were determined. The degree of ion participation in phonon modes was determined from the analysis of displacement vectors that was obtained in the first-principles calculation. The elastic constants and hardness of Gd2Sn2O7 were calculated. The effect of hydrostatic pressure on the frequencies of fundamental vibrations was studied. The calculations were carried out within the MO LCAO approach with hybrid functionals that take into account the contribution of nonlocal exchange in the Hartree-Fock formalism. Our results also demonstrate the possibility of using a pseudopotential to describe the inner shells of a rare-earth ion. Keywords: rare earth stannates, phonons, elastic constants, hybrid functionals.
  1. M.A. Subramanian, G. Aravamudan, G.V. Subba Rao. Prog. Solid St. Chem., 15 (2), 55 (1983). DOI: 10.1016/0079-6786(83)90001-8
  2. R. Zhang, Q. Xu, W. Pan, C.L. Wan, L.H. Qi, H.Z. Miao. Key Eng. Mater., 336-338, 420 (2007). DOI: 10.4028/www.scientific.net/kem.336-338.420
  3. D.R. Clarke. Surf. Coat. Technol., 163, 67 (2003). DOI: 10.1016/S0257-8972(02)00593-5
  4. J.W. Fergus. Metall. Mater. Trans. E, 1 (2), 118 (2014). DOI: 10.1007/s40553-014-0012-y
  5. K.E. Sickafus. Science, 289, 748 (2000). DOI: 10.1126/science.289.5480.748
  6. J. Lian, R.C. Ewing et al. J. Mater. Res., 19, 1575 (2004). DOI: 10.1557/JMR.2004.0178
  7. R. Cao, G. Quan, Z. Shi, T. Chen, Z. Luo, G. Zheng, Z. Hu. J. Phys. Chem. Solids., 118, 109 (2018). DOI: 10.1016/j.jpcs.2018.03.002
  8. A.M. Srivastava. Opt. Materials, 31 (6), 881 (2009). DOI: 10.1016/j.optmat.2008.10.021
  9. S.A. Klimin, M.N. Popova, E.P. Chukalina, B.Z. Malkin, A.R. Zakirov, E. Antic-Fidancev, Ph. Goldner, P. Aschehoug, G. Dhalenne. Phys. Solid State, 47 (8), 1425 (2005). DOI: 10.1134/1.2014481
  10. D. Jina, X. Yu, H. Yang, H. Zhu, L. Wang, Y. Zheng. J. Alloys Compd., 474, 557 (2009). DOI: 10.1016/j.jallcom.2008.06.159
  11. A.A. Saleh, H.Z. Hamamera, H.K. Khanfar, A.F. Qasrawi, G. Yumusak. Mat. Sci. Semicond. Proc., 88, 256 (2018). DOI: 10.1016/j.mssp.2018.08.017
  12. K.W. Li, H. Li, H. Zhang, R. Yu, H. Wang, H. Yan. Mater. Res. Bull., 41, 191 (2006). DOI: 10.1016/j.materresbull.2005.07.018
  13. R.A. McCauley, F.A. Hummel. J. Lumin., 6 (2), 105 (1973). DOI: 10.1016/0022-2313(73)90046-x
  14. S. Fujihara, K. Tokumo. Chem. Mater., 17, 22 (2005). DOI: 10.1021/cm0513785
  15. J. Feng, B. Xiao, Z.X. Qu, R. Zhou, W. Pan. Appl. Phys. Lett., 99, 201909 (2011). DOI: 10.1063/1.3659482
  16. L.T. Denisova, Yu.F. Kargin, V.M. Denisov. Neorgan. mater, 53 (975), 2017 (in Russian). DOI: 10.7868/S0002337X17090111
  17. M.T. Vandenborre, E. Husson, J.P. Chatry, D. Michel. J. Raman Spectrosc., 14, 63 (1983). DOI: 10.1002/jrs.1250140202
  18. K.M. Turner, C.L. Tracy, W.L. Mao, R.C. Ewing. J. Phys.: Condens. Matter., 29, 504005 (2017). DOI: 10.1088/1361-648X/aa9960
  19. R. Pei, B. Lu, Y. Dong, B. You. Acta Materialia, 270, 119868 (2024). DOI: 10.1016/j.actamat.2024.119868
  20. J. Liao, L. Kong, Q. Wang, J. Li, G. Peng. J. Adv. Opt. Photon., 1 (2), 95 (2018). DOI: 10.32604/jaop.2018.02756
  21. R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, Ph. D'Arco, M. Llunel, M. Causa, Y. Noel, L. Maschio, A. Erba, M. Rerat, S. Casassa. CRYSTAL17 User's Manual [Electronic source]. URL: http://www.crystal.unito.it/index.php
  22. F. Cora. Mol. Phys., 103 (18), 2483 (2005). DOI: 10.1080/00268970500179651
  23. G. Sophia, P. Baranek, C. Sarrazin, M. Rerat, R. Dovesi. Systematic influence of atomic substitution on the phase diagram of ABO3 ferroelectric perovskites (2014) [Electronic source]. URL: http://www.crystal.unito.it/Basis_Sets/tin.html
  24. Energy-consistent Pseudopotentials of the Stuttgart [Electronic source]. URL: http://www.tc.uni-koeln.de/PP/clickpse.en.html
  25. F. Pascale, C.M. Zicovich-Wilson, F. Lopez Gejo, B. Civalleri, R. Orlando, R. Dovesi. J. Comput. Chem., 25, 888 (2004). DOI: 10.1002/jcc.20019
  26. R. Dovesi, R. Orlando, A. Erba, C.M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D'Arco, Y. Noel, M. Causa, M. Rerat, B. Kirtman. Int. J. Quantum Chem., 114, 1287 (2014). DOI: 10.1002/qua.24658
  27. L. Maschio, B. Kirtman, R. Orlando, M. Rerat. J. Chem. Phys., 137 (20), 204113 (2012). DOI: 10.1063/1.4767438
  28. P. Labeguerie, F. Pascale, M. Merawa, C. Zicovich-Wilson, N. Makhouki, R. Dovesi. Eur. Phys. J. B, 43, 453 (2005). DOI: 10.1140/epjb/e2005-00078-6
  29. T.M. Duarte, P.G.C. Buzolin, I.M.G. Santos, E. Longo, J.R. Sambrano. Theor. Chem. Accounts, 135 (6), 150 (2016). DOI: 10.1007/s00214-016-1901-1
  30. Y. Tian, B. Xu, Z. Zhao. Int. J. Refract. Hard. Met., 33, 93 (2012). DOI: 10.1016/j.ijrmhm.2012.02.021
  31. D.V. Korabel'nikov, Y.N. Zhuravlev. Phys. Solid State, 58 (6), 1166 (2016). DOI: 10.1134/S106378341606025
  32. Yu.Kh. Vekilov, O.M. Krasilnikov. UFN, 179 (8), 883 (2009) (in Russian). DOI: 10.3367/UFNr.0179.200908f.0883

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru