Chernyshev V.A.
1, Glukhov K.I.
1, Zayats P.A.
21Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
2M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: vladimir.chernyshev@urfu.ru, glukhovk172@yandex.ru
The phonon spectrum of gadolinium stannate Gd2Sn2O7 was calculated within the ab initio approach. The frequencies and types of phonon modes active in infrared absorption and Raman scattering were determined. The degree of ion participation in phonon modes was determined from the analysis of displacement vectors that was obtained in the first-principles calculation. The elastic constants and hardness of Gd2Sn2O7 were calculated. The effect of hydrostatic pressure on the frequencies of fundamental vibrations was studied. The calculations were carried out within the MO LCAO approach with hybrid functionals that take into account the contribution of nonlocal exchange in the Hartree-Fock formalism. Our results also demonstrate the possibility of using a pseudopotential to describe the inner shells of a rare-earth ion. Keywords: rare earth stannates, phonons, elastic constants, hybrid functionals.
- M.A. Subramanian, G. Aravamudan, G.V. Subba Rao. Prog. Solid St. Chem., 15 (2), 55 (1983). DOI: 10.1016/0079-6786(83)90001-8
- R. Zhang, Q. Xu, W. Pan, C.L. Wan, L.H. Qi, H.Z. Miao. Key Eng. Mater., 336-338, 420 (2007). DOI: 10.4028/www.scientific.net/kem.336-338.420
- D.R. Clarke. Surf. Coat. Technol., 163, 67 (2003). DOI: 10.1016/S0257-8972(02)00593-5
- J.W. Fergus. Metall. Mater. Trans. E, 1 (2), 118 (2014). DOI: 10.1007/s40553-014-0012-y
- K.E. Sickafus. Science, 289, 748 (2000). DOI: 10.1126/science.289.5480.748
- J. Lian, R.C. Ewing et al. J. Mater. Res., 19, 1575 (2004). DOI: 10.1557/JMR.2004.0178
- R. Cao, G. Quan, Z. Shi, T. Chen, Z. Luo, G. Zheng, Z. Hu. J. Phys. Chem. Solids., 118, 109 (2018). DOI: 10.1016/j.jpcs.2018.03.002
- A.M. Srivastava. Opt. Materials, 31 (6), 881 (2009). DOI: 10.1016/j.optmat.2008.10.021
- S.A. Klimin, M.N. Popova, E.P. Chukalina, B.Z. Malkin, A.R. Zakirov, E. Antic-Fidancev, Ph. Goldner, P. Aschehoug, G. Dhalenne. Phys. Solid State, 47 (8), 1425 (2005). DOI: 10.1134/1.2014481
- D. Jina, X. Yu, H. Yang, H. Zhu, L. Wang, Y. Zheng. J. Alloys Compd., 474, 557 (2009). DOI: 10.1016/j.jallcom.2008.06.159
- A.A. Saleh, H.Z. Hamamera, H.K. Khanfar, A.F. Qasrawi, G. Yumusak. Mat. Sci. Semicond. Proc., 88, 256 (2018). DOI: 10.1016/j.mssp.2018.08.017
- K.W. Li, H. Li, H. Zhang, R. Yu, H. Wang, H. Yan. Mater. Res. Bull., 41, 191 (2006). DOI: 10.1016/j.materresbull.2005.07.018
- R.A. McCauley, F.A. Hummel. J. Lumin., 6 (2), 105 (1973). DOI: 10.1016/0022-2313(73)90046-x
- S. Fujihara, K. Tokumo. Chem. Mater., 17, 22 (2005). DOI: 10.1021/cm0513785
- J. Feng, B. Xiao, Z.X. Qu, R. Zhou, W. Pan. Appl. Phys. Lett., 99, 201909 (2011). DOI: 10.1063/1.3659482
- L.T. Denisova, Yu.F. Kargin, V.M. Denisov. Neorgan. mater, 53 (975), 2017 (in Russian). DOI: 10.7868/S0002337X17090111
- M.T. Vandenborre, E. Husson, J.P. Chatry, D. Michel. J. Raman Spectrosc., 14, 63 (1983). DOI: 10.1002/jrs.1250140202
- K.M. Turner, C.L. Tracy, W.L. Mao, R.C. Ewing. J. Phys.: Condens. Matter., 29, 504005 (2017). DOI: 10.1088/1361-648X/aa9960
- R. Pei, B. Lu, Y. Dong, B. You. Acta Materialia, 270, 119868 (2024). DOI: 10.1016/j.actamat.2024.119868
- J. Liao, L. Kong, Q. Wang, J. Li, G. Peng. J. Adv. Opt. Photon., 1 (2), 95 (2018). DOI: 10.32604/jaop.2018.02756
- R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, Ph. D'Arco, M. Llunel, M. Causa, Y. Noel, L. Maschio, A. Erba, M. Rerat, S. Casassa. CRYSTAL17 User's Manual [Electronic source]. URL: http://www.crystal.unito.it/index.php
- F. Cora. Mol. Phys., 103 (18), 2483 (2005). DOI: 10.1080/00268970500179651
- G. Sophia, P. Baranek, C. Sarrazin, M. Rerat, R. Dovesi. Systematic influence of atomic substitution on the phase diagram of ABO3 ferroelectric perovskites (2014) [Electronic source]. URL: http://www.crystal.unito.it/Basis_Sets/tin.html
- Energy-consistent Pseudopotentials of the Stuttgart [Electronic source]. URL: http://www.tc.uni-koeln.de/PP/clickpse.en.html
- F. Pascale, C.M. Zicovich-Wilson, F. Lopez Gejo, B. Civalleri, R. Orlando, R. Dovesi. J. Comput. Chem., 25, 888 (2004). DOI: 10.1002/jcc.20019
- R. Dovesi, R. Orlando, A. Erba, C.M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D'Arco, Y. Noel, M. Causa, M. Rerat, B. Kirtman. Int. J. Quantum Chem., 114, 1287 (2014). DOI: 10.1002/qua.24658
- L. Maschio, B. Kirtman, R. Orlando, M. Rerat. J. Chem. Phys., 137 (20), 204113 (2012). DOI: 10.1063/1.4767438
- P. Labeguerie, F. Pascale, M. Merawa, C. Zicovich-Wilson, N. Makhouki, R. Dovesi. Eur. Phys. J. B, 43, 453 (2005). DOI: 10.1140/epjb/e2005-00078-6
- T.M. Duarte, P.G.C. Buzolin, I.M.G. Santos, E. Longo, J.R. Sambrano. Theor. Chem. Accounts, 135 (6), 150 (2016). DOI: 10.1007/s00214-016-1901-1
- Y. Tian, B. Xu, Z. Zhao. Int. J. Refract. Hard. Met., 33, 93 (2012). DOI: 10.1016/j.ijrmhm.2012.02.021
- D.V. Korabel'nikov, Y.N. Zhuravlev. Phys. Solid State, 58 (6), 1166 (2016). DOI: 10.1134/S106378341606025
- Yu.Kh. Vekilov, O.M. Krasilnikov. UFN, 179 (8), 883 (2009) (in Russian). DOI: 10.3367/UFNr.0179.200908f.0883
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.