Physics of the Solid State
Volumes and Issues
Sputtering of Metal Atoms by Surface Wake Potential
N.P. Kalashnikov N. P.1
1National Research Nuclear University “MEPhI”, Moscow, Russia
Email: kalash@mephi.ru

PDF
Using the corona discharge example, the interaction of charged particles beam with a metal surface, which leads to the sputtering of the electrode substance, is considered. When a fast charged particle moves near and through the condensed state, fluctuations in the electron density of the metal electrode occur, which lead to the emergence of the surface wake potential (the surface plasmons). In this work, the cross-section expression was obtained for the electrode atoms sputtering under the influence of the surface wake potential excited by the movement of a charged particle near the electrode surface. It is shown that the sputtering result depends on the magnitude of the charge and energy of the incident particle. It is noted that surface plasmons excitations play an important role when the sliding angle of incident beams of charged particles on the metal surface becomes small. The sputtering coefficient value during the interaction of the electron beam with the silver surface is estimated. Keywords: corona discharge, metallic surface, inelastic scattering, surface plasmons excitation, surface wake potential, metal sputtering.
  1. D. Megyeria, A. Kohuta, Z. Geretovszky. J. Aerosol Sci. 154, 105758 (2021)
  2. J. Niedbalski. Rev. Sci. Instrum. 74, 7, 3520 (2003)
  3. M.-W. Li, Z. Hu, X.-Z. Wang, Q. Wu, Y. Chen. J. Mater. Sci. 39, 1, 283 (2004)
  4. J.-S. Chang, P.A. Lawless, T. Yamamoto. IEEE Trans. Plasma Sci. 19, 6, 1152 (1991)
  5. A.A. Petrov, R.H. Amirov, I.S. Samoylov. IEEE Trans. Plasma Sci. 37, 7, Part 1, 1146 (2009)
  6. V.A. Zagaynov, V.V. Maksimenko, N.P. Kalashnikov, I.E. Agranovski, V.D. Chausov, D.K. Zagaynov. J. Surf. Investigation: X-ray, Synchrotron \& Neutron Techniques 16, 4, 462 (2022)
  7. V.A. Kurnaev, Yu.S. Protasov, I.V. Tsvetkov. Vvedeniye v puchkovuyu elektroniku. MIFI, M. (2008). 452 s. (in Russian)
  8. R.H. Ritchie, W. Brandt, P.M. Echenique. Phys. Rev. B 14, 11, 4808 (1976)
  9. M.I. Ryazanov. Vvedeniye v elektrodinamiku kondensirovannogo veshchestva. Fizmatlit, M. (2002). 320 s. (in Russian)
  10. T.A. Vartanyan. Osnovy fiziki metallicheskilh nanostruktur. NIU ITMO, SPb (2013). 133 s. (in Russian)
  11. R.H. Ritchie. Phys. Rev. 106, 5, 874 (1957)
  12. K. Suzuki, M. Kitagawa, Y.H. Ohtsuki. Physica Status Solidi B 82, 2, 643 (1977)
  13. F.J. Garci a de Abajo, P.M. Echenique. Phys. Rev. B 46, 5, 2663 (1992)
  14. N.P. Kalashnikov. J. Surf. Investigation: X-ray, Synchrotron. Neutron Techniques 17, 2, 490 (2023)
  15. Y.-H. Ohtsuki. Charged Beam Interaction with Solids. Taylor \& Francis Ltd, London \& New York (1983). 277 p
  16. L.D. Landau, E.M. Lifshitz. Kvantovaya mekhanika. Nerelyativistskaya teoriya, t. III. Nauka, GRFML, M. (1989). 768 s. (in Russian)
  17. N. Kalashnikov. Coherent Interactions of Charged Particles in Single Crystals. Scattering and Radiative Processes in Single Crystals. Harwood Academic Publishers (1988). 328 p

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru