The effect of a nanocrystal size and shape on the baric and temperature dependences of its properties (R e v i e w)
Magomedov M. N.
11Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru
The problems of studying the lattice properties of a nanocrystal at various pressures and temperatures are discussed. The changes in the equation of state and baric dependences of various properties of gold during the transition from macro- to nanocrystal of cubic or rod-like shape of 306 atoms were analyzed. The following properties were considered: Debye temperature, first and second Gruneisen parameters, elastic modulus, thermal expansion coefficient, isochoric and isobaric heat capacity, specific free surface energy and its derivative by temperature, melting point. The pressure derivatives of these functions were also considered. The presented dependences are compared with the results of other authors and the problems of calculation of these properties by different methods are discussed. It was shown that at isomorphic-isothermo-isobaric reduction of a nanocrystal size the values of some properties decrease, others - increase, and there are some that can change their size dependence at change of P-T-conditions. It was shown that when the nanocrystal shape deviates from the energy-optimal shape, the size changes of the baric dependences are increase. Keywords: nanocrystal, surface energy, equation of state, thermal expansion, elastic modulus, melting point, gold.
- N.R.C. Corsini, W.R. Little, A. Karatutlu, Y. Zhang, O. Ersoy, P.D. Haynes, C. Molteni, N.D.M. Hine, I. Hernandez, J. Gonzalez, F. Rodriguez, V.V. Brazhkin, A. Sapelkin. Nano Lett. 15, 11, 7334 (2015). DOI: 0.1021/acs.nanolett.5b02627
- F. Bai, K. Bian, X. Huang, Z. Wang, H. Fan. Chem. Rev. 119, 12, 7673 (2019). DOI: 10.1021/acs.chemrev.9b00023
- I.M. Padilla Espinosa, T.D.B. Jacobs, A. Martini. Nanoscale Res. Lett. 17, 1, 96 (2022). DOI: 10.1186/s11671-022-03734-z
- W.R. Tyson, W.A. Miller. Surf. Sci. 62, 1, 267 (1977). DOI: 10.1016/0039-6028(77)90442-3
- S.N. Zhevnenko, I.S. Petrov, D. Scheiber, V.I. Razumovskiy. Acta Materialia 205, 116565 (2021). DOI: 10.1016/j.actamat.2020.116565
- S. Zhu, K. Xie, Q. Lin, R. Cao. Advances. Colloid. Interface Sci. 315, 102905 (2023). DOI: 10.1016/j.cis.2023.102905
- X. Zhang, W. Li, H. Kou, J. Shao, Y. Deng, X. Zhang, J. Ma, Y. Li, X. Zhang. J. App. Phys. 125, 18, 185105 (2019). DOI: 10.1063/1.5090301
- H. Amara, J. Nelayah, J. Creuze, A. Chmielewski, D. Alloyeau, C. Ricolleau, B. Legrand. Phys. Rev. B 105, 16, 165403 (2022). DOI: 10.1103/PhysRevB.105.165403
- E.H. Abdul-Hafidh. J. Nanoparticle Res. 24, 12, 266 (2022). DOI: 10.1007/s11051-022-05638-6
- M.N. Magomedov. Phys. Rev. B 109, 3, 035405 (2024). DOI: 10.1103/PhysRevB.109.035405
- M.N. Magomedov. Phys. Solid State 62, 12, 2280 (2020). DOI: 10.1134/S1063783420120197
- M.N. Magomedov. Tech. Phys. 58, 9, 1297 (2013). DOI: 10.1134/S106378421309020X
- M.N. Magomedov. Phys. Solid State 46, 5, 954 (2004). DOI: 10.1134/1.1744976
- M.N. Magomedov. Crystallogr. Reps 62, 3, 480 (2017). DOI: 10.1134/S1063774517030142
- L.A. Girifalco, Statistical Physics of Materials, J. Wiley and Sons Ltd., New York (1973). 346 p
- M.N. Magomedov. Phys. Solid State 63, 10, 1465 (2021). DOI: 10.1134/S1063783421090250
- P. Richard, A. Castellano, R. Bejaud, L. Baguet, J. Bouchet, G. Geneste, F. Bottin. Phys. Rev. Lett. 131, 20, 206101 (2023). DOI: 10.1103/PhysRevLett.131.206101
- D.E. Fratanduono, M. Millot, D.G. Braun, S.J. Ali, A. Fernandez-Panella, C.T. Seagle, J.-P. Davis, J.L. Brown, Y. Akahama, R.G. Kraus, M.C. Marshall, R.F. Smith, E.F. O'Bannon III, J.M. Mcnaney, J.H. Eggert. Science 372, 6546, 1063 (2021). DOI: 10.1126/science.abh0364
- M.N. Magomedov. Phys. Solid State 64, 7, 765 (2022). DOI: 10.21883/PSS.2022.07.54579.319
- G. Weck, V. Recoules, J.A. Queyroux, F. Datchi, J. Bouchet, S. Ninet, G. Garbarino, M. Mezouar, P. Loubeyre. Phys. Rev. B 101, 1, 014106 (2020). DOI: 10.1103/PhysRevB.101.014106
- P. Cheyssac, R. Kofman, R. Garrigos. Phys. Scripta 38, 2, 164 (1988). DOI: 10.1088/0031-8949/38/2/009
- R. Garrigos, P. Cheyssac, R. Kofman. Z. Phys. D 12, 1- 4, 497 (1989). DOI: 10.1007/BF01427006
- S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen. Phys. Rev. Lett. 77, 1, 99 (1996). DOI: 10.1103/PhysRevLett.77.99
- G. Kellermann, A.F. Craievich. Phys. Rev. B 78, 5, 054106 (2008). DOI: 10.1103/physrevb.78.054106
- F. Ercolessi, W. Andreoni, E. Tosatti. Phys. Rev. Lett. 66, 7, 911 (1991). DOI: 10.1103/physrevlett.66.911
- Y. Qi, T. Cav gin, W.L. Johnson, W.A. Goddard III. J. Chem. Phys. 115, 1, 385 (2001). DOI: 10.1063/1.1373664
- T.S. Zhu, M. Li. Mater. Res. Bull. 63, 253 (2015). DOI: 10.1016/j.materresbull.2014.12.010
- M.N. Magomedov. Tech. Phys. 56, 9, 1277 (2011). DOI: 10.1134/S106378421109012X
- M.N. Magomedov. Tech. Phys. 59, 5, 675 (2014). DOI: 10.1134/S1063784214050211
- M.N. Magomedov. Tech. Phys. 61, 5, 730 (2016). DOI: 10.1134/S1063784216050157
- M.N. Magomedov. J. Mol. Liq. 285, 106 (2019). DOI: 10.1016/j.molliq.2019.04.032
- M.N. Magomedov. Phys. Solid State 66, 3, 428 (2024). DOI: 10.61011/PSS.2024.03.57947.272
- P.I. Dorogokupets, T.S. Sokolova, B.S. Danilov, K.D. Litasov. Geodynamicsn \& Tectonophysics 3, 2, 129 (2012). DOI: 10.5800/GT-2012-3-2-0067
- E.N. Ahmedov. J. Phys.: Conf. Ser. 1348, 012002, 1 (2019). DOI: 10.1088/1742-6596/1348/1/012002
- S.P. Kramynin. Phys. Met. Metallography 123, 2, 107 (2022). DOI: 10.1134/S0031918X22020065
- S.P. Kramynin. J. Phys. Chem. Solids 152, 109964 (2021). DOI: 10.1016/j.jpcs.2021.109964
- S.P. Kramynin. Solid State Sci. 124, 106814 (2022). DOI: 10.1016/j.solidstatesciences.2022.106814
- I.F. Golovnev, E.I. Golovneva. Phys. Mesomech. 23, 3, 189 (2020). DOI: 10.1134/S1029959920030017
- M. Zhao, Y. Xia. Nature Rev. Mater. 5, 6, 440 (2020). DOI: 10.1038/s41578-020-0183-3
- S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, Y. Li. Phys. Chem. Chem.Phys. 13, 22, 10652 (2011). DOI: 10.1039/c0cp90161j
- M. Zhu, J. Liu, Q. Huang, J. Dong, X. Yang. J. Phys. D 55, 48, 485303 (2022). DOI: 10.1088/1361-6463/ac9485
- E. Purushotham, V. Radhika. Mater. Today: Proc. 47, 15, 4993 (2021). DOI: 10.1016/j.matpr.2021.04.451
- C.Q. Sun. Progress. Mater. Sci. 54, 2, 179 (2009). DOI: 10.1016/j.pmatsci.2008.08.001
- M. Goyal, B.R.K. Gupta. Mod. Phys. Lett. B 33, 26, 1950310 (2019). DOI: 10.1142/s021798491950310x
- M.N. Magomedov. J. Surf. Investigation. X-ray, Synchrotron. Neutron Techniques 6, 1, 86 (2012). DOI: 10.1134/S1027451012010132
- Y.F. Zhu, J.S. Lian, Q. Jiang. J. Phys. Chem. C 113, 39, 16896 (2009). DOI: 10.1021/jp902097f
- V. Pandey, M. Kumar. Pramana 97, 3, 88 (2023). DOI: 10.1007/s12043-023-02552-x
- G. Kellermann, F.L.C. Pereira, A.F. Craievich. J. Non-Cryst. Solids 635, 122995 (2024). DOI: 10.1016/j.jnoncrysol.2024.122995
- D. Shekhawat, M. Vauth, J. Pezoldt. Inorganics 10, 4, 56 (2022). DOI: 10.3390/inorganics10040056
- S. Schonecker, X. Li, B. Johansson, S.K. Kwon, L. Vitos. Sci. Rep. 5, 1, 14860 (2015). DOI: 10.1038/srep14860
- T. Cheng, D. Fang, Y. Yang. App. Surf. Sci. 393, 364 (2017). DOI: 10.1016/j.apsusc.2016.09.147
- D. Scheiber, O. Renk, M. Popov, L. Romaner. Phys. Rev. B 101, 17, 174103 (2020). DOI: 10.1103/PhysRevB.101.174103
- A.O. Tipeev, J.P. Rino, E.D. Zanotto. J. Chem. Phys. 155, 9, 094101 (2021). DOI: 10.1063/5.0059882
- A. Forslund, A. Ruban. Phys. Rev. B 105, 4, 045403 (2022). DOI: 10.1103/PhysRevB.105.045403
- C. Li, S. Lu, S. Divinski, L. Vitos. Acta Mater. 255, 119074 (2023). DOI: 10.1016/j.actamat.2023.119074
- V.M. Samsonov, S.A. Vasilev, I.V. Talyzin, K.K. Nebyvalova, V.V. Puitov. Russ. J. Phys. Chem. A 97, 8, 1751 (2023). DOI: 10.1134/S003602442308023X
- G. Kellermann, F.L.C. Pereira, A.F. Craievich. J. Appl. Cryst. 53, 2, 455 (2020). DOI: 10.1107/S1600576720002101
- L. Keerthana, G. Dharmalingam. J. Phys. Chem. Solids 185, 111800 (2024). DOI: 10.1016/j.jpcs.2023.111800
- G. de With. Chem. Rev. 123, 23, 13713 (2023). DOI: 10.1021/acs.chemrev.3c00489
- M.N. Magomedov. Phys. Solid State 65, 5, 708-717 (2023). DOI: 10.21883/PSS.2023.05.56040.46
- M.N. Magomedov. Phys. Met. Metallography 105, 2, 116 (2008). DOI: 10.1134/S0031918X08020038
- M.N. Magomedov. Phys. Solid State 66, 2, 221 (2024). DOI: 10.61011/PSS.2024.02.57919.241
- D. Errandonea. J. Appl. Phys. 108, 3, 033517 (2010). DOI: 10.1063/1.3468149
- D.M. Foster, T. Pavloudis, J. Kioseoglou, R.E. Palmer. Nature Commun. 10, 1, 2583 (2019). DOI: 10.1038/s41467-019-10713-z
- J. Chen, X. Fan, J. Liu, C. Gu, Y. Shi, D.J. Singh, W. Zheng. J. Phys. Chem. C 124, 13, 7414 (2020). DOI: 10.1021/acs.jpcc.9b10769
- C. Zeni, K. Rossi, T. Pavloudis, J. Kioseoglou, S. de Gironcoli, R.E. Palmer, F. Baletto. Nature Commun. 12, 1, 6056 (2021). DOI: 10.1038/s41467-021-26199-7
- B.K. Pandey, R.L. Jaiswal. Physica B: Condensed Matter 651, 414602 (2023). DOI: 10.1016/j.physb.2022.414602
- H. Sheng, B. Xiao, X. Jiang. Physica B: Condens. Matter 667, 415193 (2023). DOI: 10.1016/j.physb.2023.415193
- G. Poletaev, A. Sannikov, Y. Bebikhov, A. Semenov. Mol. Simul. 50, 10, 1 (2024). DOI: 10.1080/08927022.2024.2342972
- E.N. Ahmedov. Physica B: Condens. Matter 571, 252 (2019). DOI: 10.1016/j.physb.2019.07.027
- B.S. Murty, M.K. Datta, S.K. Pabi. S\=adhan\=a 28, 1- 2, 23 (2003). DOI: 10.1007/BF02717124
- M.S. Omar. Int. J. Thermophys. 37, 1, 11 (2016). DOI: 10.1007/s10765-015-2026-9
- Y.H. Zhao, Y.T. Zhu. Rev. Adv. Mater. Sci. 48, 1, 52 (2017). https://www.ipme.ru/e-journals/RAMS/ no_14817/04_14817_zhao.pdf
- M.S. Omar. J. Therm. Anal. Calorim. 148, 24, 14023 (2023). DOI: 10.1007/s10973-023-12689-x
- M. Mohr, A. Caron, P. Herbeck-Engel, R. Bennewitz, P. Gluche, K. Bruhne, H.-J. Fecht. J. Appl. Phys. 116, 12, 124308 (2014). DOI: 10.1063/1.4896729
- W. Li, X. Wang, L. Gao, Y. Lu, W. Wang. Materials 12, 23, 3913 (2019). DOI: 10.3390/ma12233913
- J.J. Li, B.B. Lu, H.J. Zhou, C.Y. Tian, Y.H. Xian, G.M. Hu, R. Xia. Phys. Lett. A 383, 16, 1922 (2019). DOI: 10.1016/j.physleta.2018.10.053
- X. Ou, Y. Shen, Y. Yang, Z. You, P. Wang, Y. Yang, X. Tian. Materials 16, 13, 4618 (2023). DOI: 10.3390/ma16134618
- Y.Q. Hu, J.F. Xu, L. Su, Y.H. Zhang, S.H. Ding, Y.H. Shen, R. Xia. Mater. Chem. Phys. 296, 127270 (2023). DOI: 10.1016/j.matchemphys.2022.127270
- M. Popov, V. Churkin, D. Ovsyannikov, A. Khabibrakhmanov, A. Kirichenko, E. Skryleva, Y. Parkhomenko, M. Kuznetsov, S. Nosukhin, P. Sorokin, S. Terentiev, V. Blank. Diam. Relat. Mater. 96, 52 (2019). DOI: 10.1016/j.diamond.2019.04.033
- M.N. Magomedov. J. Surface Investigation. X-ray, Synchrotron Neutron Techn. 9, 6, 1236 (2015). DOI: 10.1134/S1027451015060154
- V.N. Likhachev, G.A. Vinogradov, M.I. Alymov. Phys. Lett. A 357, 3, 236 (2006). DOI: 10.1016/j.physleta.2006.04.050
- I. Avramov, M. Michailov. J. Phys.: Condens. Matter 20, 29, 295224 (2008). DOI: 10.1088/0953-8984/20/29/295224
- H. Lei, J. Li, J. Luo. Nanoscale 7, 15, 6762 (2015). DOI: 10.1039/C5NR00056D
- R. Carles, P. Benzo, B. Pecassou, C. Bonafos. Sci. Rep. 6, 1, 39164 (2016). DOI: 10.1038/srep39164
- T. Vasina, J. Bernard, Magali Benoit, F. Calvo. Phys. Rev. B 105, 24, 245406 (2022). DOI: 10.1103/PhysRevB.105.245406
- K. Gu, H. Wu, J. Su, P. Sun, P.H. Tan, H. Zhong. Nano Lett. 24, 13, 4038 (2024). DOI: 10.1021/acs.nanolett.4c01021
- K. Michaelian, I. Santamaria-Holek. Entropy 19, 7, 314 (2017). DOI: 10.3390/e19070314
- A.I. Oliva, G.G. Comparan-Rodriguez, V. Sosa, A.I. Oliva-Aviles. J. Mater. Sci. 58, 20, 8563 (2023). DOI: 10.1007/s10853-023-08536-x
- P. Villain, P. Beauchamp, K.F. Badawi, P. Goudeau, P.-O. Renault. Scr. Mater. 50, 9, 1247 (2004). DOI: 10.1016/j.scriptamat.2004.01.033
- M. Krief, Y. Ashkenazy. Phys. Rev. Res. 6, 2, 023253 (2024). DOI: 10.1103/PhysRevResearch.6.023253
- B. Grabowski, L. Ismer, T. Hickel, J. Neugebauer. Phys. Rev. B 79, 13, 134106 (2009). DOI: 10.1103/PhysRevB.79.134106
- C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle. Rev. Mod. Phys. 86, 1, 253 (2014). DOI: 10.1103/RevModPhys.86.253
- D.D. Satikunvar, N.K. Bhatt, B.Y. Thakore. J. App. Phys. 129, 3, 035107 (2021). DOI: 10.1063/5.0022981
- M. Borinaga, I. Errea, M. Calandra, F. Mauri, A. Bergara. Phys. Rev. B 93, 17, 174308 (2016). DOI: 10.1103/PhysRevB.93.174308
- I. Loa, F. Landgren. J. Phys.: Condens. Matter 36, 18, 185401 (2024). DOI: 10.1088/1361-648X/ad1e08
- M.N. Magomedov. Tech. Phys. 55, 9, 1373 (2010). DOI: 10.1134/S1063784210090227
- M. Matsui. J. Phys.: Conf. Ser. --- IOP Publ. 215, 1, 012197 (2010). DOI: 10.1088/1742-6596/215/1/012197
- X. Huang, F. Li, Q. Zhou, Y. Meng, K.D. Litasov, X. Wang, B. Liu, T. Cui. Sci. Rep. 6, 19923 (2016). DOI: 10.1038/srep19923
- A.M. Molodets, A.A. Golyshev, D.V. Shakhrai. J. Exp. Theor. Phys. 124, 3, 469 (2017). DOI: 10.1134/S1063776117030049
- D.K. Belashchenko. Physics. Uspekhi 63, 12, 1161 (2020). DOI: 10.3367/UFNe.2020.01.038761.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.