Physics of the Solid State
Volumes and Issues
Comparative analysis of optical properties C-Gd2O3 : Eu3+ single crystal and nanocrystalline sample
Bakovets V.V. 1, Tarasenko M. S. 1, Nikolaev R.E. 1, Pivovarova T.D.1, Yushina I.V. 1, Ryadun A. A. 1, Dolgovesova I.P. 1, Naumov N. G. 1
1Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: becambe@niic.nsc.ru, tarasen@niic.nsc.ru, nikolaev@niic.nsc.ru, jush@niic.nsc.ru, ryadunalexey@mail.ru, dolgovesova@niic.nsc.ru, naumov@niic.nsc.ru

PDF
Single crystals (SC) of C-Gd2O3 were grown from a solution in a Li6Gd(BO_3)_3+Gd2O3+Eu2O3-flux with seed using Czochralski method. Growing was carried out at a relatively low temperature of 1145oC. A sample of nanocrystallites powder (NCP) was obtained by the sol-gel method from aqueous solutions of Gd(NO_3)3 and Eu(NO3)3 with NaOH-precipitant by dispersed spraying of these solutions. The obtained SC and NCP C C-Gd2O3 : Eu3+ samples were analyzed by X-ray powder diffraction (XRD) to confirm the C-Gd2O3 cubic phase formation and to determine both the sizes (59 nm) and the deformation stresses (0.06%) of nanoparticles. It has been shown, when the photoluminescence (PL) excitation energy changes over the series 250, 280, and 300 nm, then low-energy PL bands at 620 and 710 nm decrease in intensity relative to the intensity of main PL band at 611 nm. For high-energy bands at 595, 550, 480, 470 and 420 nm, an increase in their intensity relative to the 611 nm band is observed. High-energy bands are not visible against the background noise for NCP. A study of diffuse reflection (DR) spectra showed the charge transfers along PL radiative transitions are not direct and are carried out with the participation of phonons at energy of 0.29 eV for the bulk part of the SC and 0.26 eV for the damaged surface layer of the SC formed during mechanical polishing. Higher phonon energy of 0.49 eV is observed for NCPs, this is due to the large surface area of the particles and that correlates with the broadening of the XRD reflections at half maximum. Keywords: cubic gadolinium oxide, single crystal and nanocrystallite sample, photoluminescence activator Eu3+ ions, diffusion reflection, photoluminescence energy redistribution.
  1. V.A. Pustovarov, I.N. Ogorodnikov, R.E. Nikolaev, M.S. Tarasenko, D.A. Tavrunov, V.A. Trifonov, N.G. Naumov. Opt. Mater. 143, 114265 (2023). https://doi.org/10.1016/j.optmat.2023.114265
  2. V.V. Bakovets, T.D. Pivovarova, P.E. Plyusnin, I.P. Dolgovesova, M.I. Rakhmanova, A.V. Sotnikov. Rus. J. Gen. Chem., 94, 1, 138 (2024). https://doi.org/10.1134/S1070363224010134
  3. R.E. Nikolaev, A.M. Yakovleva, M.S. Tarasenko, A.S. Sukhikh, V.A. Trifonov, N.G. Naumov. Zhurn. Strukt. Khim., 64, 7, 112774 (2023). (in Russian). https://doi.org/10.1134/S0022476623070041
  4. B. Antic, M. Mitric, D. Rodic, Y. Zhong, Y. Artemov, S. Bogdanovich, J.R. Friedman. Phys. Rev. B, 58, 6, 3212 (1998). https://doi.org/10.1103/PhysRevB.58.3212
  5. M. Mitric, P. Onnerud, D. Rodic, R. Tellgren, A. Szytula, M.L. Napijalo. J. Phys. Chem. Solids, 54, 8, 967 (1993). https://doi.org/10.1016/0022-3697(93)90226-H
  6. G.-Y. Adachi, N. Imanaka. Chem. Rev., 98 (1998). https://doi.org/10.1021/cr940055h
  7. P. Veber, M. Velazquez, V. Jubera, S. Pechev, O. Viraphong. CrystEngComm, 13, 16, 5220 (2011). https://doi.org/10.1039/c1ce00015b
  8. P. Veber, M. Velazquez, G. Gadret, D. Rytz, M. Peltz, R. Decourt. CrystEngComm, 17, 3, 492 (2015). https://doi.org/10.1039/c4ce02006e
  9. F. Druon, M. Velazquez, P. Veber, S. Janicot, O. Viraphong, G. Bu se, M.A. Ahmed, T. Graf, D. Rytz, P. Georges. Opt. Lett., 38, 20, 4146 (2013). https://doi.org/10.1364/OL.38.004146
  10. A.A. Pavlyuk, Y.V. Vasiliev, L.Y. Kharchenko, F.A. Kuznetsov, Low thermal gradient technique and method for large oxide crystals growth from melt and flux, Proc. Of APSAM-92 (Asia Pacific Society for Advanced Materials.), Shanghai, China, 1993, pp. 164
  11. Ya.V. Vasil'ev, I.A. Borovlev, E.N. Galashov, N.V. Ivannikova, F.A. Kuznetsov, A.A. Pavlyuk, I.G. Stenin, V.N. Schlegel. Nizkogradientnaya tekhnologiya rosta stsintillyatsionnykh oksidnykh kristallov. ISMA, Khar'kov, 2011. (in Russian)
  12. V.A. Pustovarov, R.E. Nikolaev, V.A. Trifonov, M.S. Tarasenko, S.J. Dhoble, D.A. Tavrunov, N.G. Naumov. Opt. Mater., 141, 113966 (2023). https://doi.org/10.1016/j.optmat.2023.113966
  13. V.V. Bakovets, L.N. Trushnikova, I.V. Korol'kov, P.E. Plyusnin, I.P. Dolgovesova, T.D. Pivovarova, N.I. Alferova. Russian Journal of General Chemistry, 83, 3 (2013). https://doi.org/10.1134/S1070363213010015
  14. P. Kubelka, F. Munk. Z. Techn. Phys., 12, 593 (1931)
  15. J. Tauc, R. Grigorovici, A. Vancu. Phys. Status Solidi B, 15, 2, 627 (1966). https://doi.org/10.1002/pssb.19660150224
  16. P.P. Fedorov, M.V. Nazarkin, R.M. Zakalyukin. Crystall. Rep., 47, 2, 316 (2002). https://doi.org/10.1134/1.1466504
  17. R. Srinivasan, N.R. Yogamalar, J. Elanchezhiyan, R.J. Joseyphus, A.C. Bose. Journal of Alloys and Compounds, 496, 1, 472 (2010). https://doi.org/10.1016/j.jallcom.2010.02.083
  18. S.S. Pushkarev, M.M. Grekhov, N.V. Zenchenko. FTP, 52, 6, 586 (2018). (in Russian). https://doi.org/10.21883/FTP.2018.06.45920.8661
  19. S.N. Nikiforova-Denisova. Tekhnologiya poluprovodnikovykh priborov i izdelij mikroelektroniki. Vysshaya shkola, M., 1989. (in Russian)
  20. Z. Wang, P. Wang, J. Zhong, H. Liang, J. Wang. J. Lumin., 152, 172 (2014). https://doi.org/10.1016/j.jlumin.2013.11.040
  21. Y.A. Kuznetsova, A.F. Zatsepin, R.A. Tselybeev, V.N. Rychkov, V.A. Pustovarov. J. Phys. Conf. Ser., 741, 1, 012089 (2016). https://doi.org/10.1088/1742-6596/741/1/012089
  22. V.V. Bakovets, S.V. Belaya, T.D. Pivovarova, I.P. Dolgovesova, I.V. Korolkov, O.V. Antonova, M.I. Rakhmanova. J. Lumin., 215, 116633 (2019). https://doi.org/10.1016/j.jlumin.2019.116633

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru