Zimin S. P.
1,2, Amirov I.I.
1, Naumov V. V.
1, Tivanov M. S
3, Lyashenko L. S.
3, Korolik O. V.
3, Abramof E.
4, Rappl P. H. O.
41Valiev Institute of Physics and Technology of RAS, Yaroslavl Branch, Yaroslavl, Russia
2Demidov State University, Yaroslavl, Russia
3Belarusian State University, Minsk, Republic of Belarus
4Materials and plasma research and development group (GPDMP), National Institute for Space Research (INPE), Sao Jose dos Campos, Brazil
Email: zimin@uniyar.ac.ru, ildamirov@yandex.ru, vvnau@rambler.ru, michael.tivanov@gmail.com
The effect of ion plasma treatment on the surface morphology and optical properties of Bi2Te3 epitaxial films has been studied. Bismuth telluride films were grown by molecular beam epitaxy on (111)BaF2 substrates and had a thickness of 290 nm. Ion-plasma treatment of the film surface was carried out in a high-density argon plasma reactor with a high-frequency induction discharge (13.56 MHz) and low pressure. The energy of Ar+ ions was set in the range of 25-150 eV, the duration of treatment was in the range of 10-120 s. Effective nanostructuring of the surface of bismuth telluride was discovered, leading to the appearance of nanostructures of various shapes and architectures with geometric sizes of 13-40 nm. From the optical transmission spectra, the value of the band gap Eg = 0.87-1.29 eV for nanostructured Bi2Te3 systems was determined. The obtained Eg values are several times higher than the values for bulk bismuth telluride (~ 0.16 eV), which can be explained by the implementation of quantum size effects. Keywords: bismuth telluride, epitaxial films, ion-plasma treatment, nanostructures, Raman scattering, reflection and transmission spectra.
- B.M. Gol'tsman, V.A. Kudinov, I.A. Smirnov. Poluprovodnikovye termoelektricheskie materialy na osnove Bi2Te3. (Nauka, M. (1972). 320 s. (in Russian)
- T. Zhang, P. Cheng, X. Chen, J.-F. Jia, X.-C. Ma, K. He, L.L. Wang, H.-J. Zhang, X. Dai, Z. Fang, X.-C. Xie, Q.-K. Xue. Phys. Rev. Lett. 103, 266803 (2009)
- Y.L. Chen, J.G. Analytis, J.-H. Chu, Z.K. Liu, S.-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.-X. She. Science 325, 178 (2009)
- D.-X. Qu, Y.S. Hor, J. Xiong, R.J. Cava, N.P. Ong. Science 329, 821 (2010)
- Y. Meng, H. Zhong, Z. Xu, T. He, J.S. Kim, S. Han, S. Kim, S. Park, Y. Shen, M. Gong, Q. Xiao, S.-H. Bae. Nanoscale Horiz. 8, 1345 (2023)
- J. Yao, K. Koski, W. Luo, J.J. Cha, L. Hu, D. Kong, V.K. Narasimhan, K. Huo, Y. Cui. Nature Commun. 5, 5670 (2014)
- J. Liu, W. Pan, H. Wang, Z. Zhang, S. Zhang, G. Yuan, C. Yuan, Y. Ren, W. Lei. Adv. Electron. Mater. 7, 2000851 (2021)
- Y. Min, G. Park, B. Kim, A. Giri, J. Zeng, J.W. Roh, S.Il. Kim, K.H. Lee, U. Jeong. ACS Nano 9, 7, 6843 (2015)
- Y.J. Lin, I. Khan, S. Saha, C.C. Wu, S.R. Barman, F.C. Kao, Z.H. Lin. Nature Commun. 12, 1, 180 (2021)
- M. Li, H.-W. Lu, S.-W. Wang, R.-P. Li, J.-Y. Chen, W.-S. Chuang, F.-S. Yang, Y.-F. Lin, C.-Y. Chen, Y.-C. Lai. Nature Commun. 13, 938 (2022)
- M. Tang, J.-Y. Zhang, S. Bi, Z.-L. Hou, X.-H. Shao, K.-T. Zhan, M.-S. Cao. ACS Appl. Mater. Interfaces 11, 33285 (2019)
- H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H.Y. Hoh, C.-X. Pan, S. Li, Q. Bao. ACS Nano 9, 2, 1886 (2015)
- E.K. Belonogov, V.A. Dybov, A.V. Kostyuchenko, S.B. Kushev, D.V. Serikov, S.A. Soldatenko, M.P. Sumets. Lett. Mater. 10, 2, 189 (2020)
- Z. Yue, Q. Chen, A. Sahu, X. Wang, M.Gu. Mater. Res. Express 4, 12, 126403 (2017)
- S. Kudo, S. Tanaka, K. Miyazaki, Y. Nishi, M. Takashiri. Mater. Trans. 58, 3, 513 (2017)
- Q.-X. Guo, Z.-X. Ren, Y.-Y. Huang, Z.-C. Zheng, X.-M. Wang, W. He, Z.-D. Zhu, J. Teng. Chin. Phys. B 30, 6, 067307 (2021)
- N.I. Fedotov, A.A. Maizlakh, V.V. Pavlovskiy, G.V. Rybalchenko, S.V. Zaitsev-Zotov. Surf. Interfaces 31, 102015 (2022)
- L.D. Zhaoa, B.-P. Zhang, W.S. Liu, H.L. Zhang, J.-F. Li. J. Alloys Compd. 467, 91 (2009)
- I. Levchenko, K. Ostrikov. J. Phys. D 40, 8, 2308 (2007)
- I. Childres, J. Tian, I. Miotkowski, Y. Chen. Phil. Mag. 93, 6, 681 (2013)
- M. Song, J.H. Chu, J. Zhou, S. Tongay, K. Liu, J. Suh, H. Chen, J.S. Kang, X. Zou, L. You. Nanotechnology 26, 26, 265301 (2015)
- J. Jadwiszczak, D.J. Kelly, J. Guo, Y. Zhou, H. Zhang. ACS Appl. Electron. Mater. 3, 4, 1505 (2021)
- Y. You, J. Park, J. Kimz. ECS J. Solid State Sci. Technol. 12, 075009 (2023)
- C.I. Fornari, P.H.O. Rappl, S.L. Morelhao, E. Abramof. J. Appl. Phys. 119, 165303 (2016)
- S.L. Morelhao, S. Kycia, S. Netzke, C.I. Fornari, P.H.O. Rappl, E. Abramof. Appl. Phys. Lett. 112, 10, 101903 (2018)
- P. Ngabonziza. Nanotechnology 33, 19, 192001 (2022)
- C.I. Fornari, E. Abramof, P.H.O. Rappl, S.W. Kycia, S.L. Morelhao. MRS Adv. 5, 1891 (2020)
- O. Caha, A. Dubroka, J. Humlcek, V. Holy, H. Steiner, M. Ul-Hassan, J. Sanchez-Barriga, O. Rader, T.N. Stanislavchuk, A.A. Sirenko, G. Bauer, G. Springholz. Crystal Growth \& Design 13, 8, 3365 (2013)
- H. Steiner, V. Volobuev, O. Caha, G. Bauer, G. Springholz, V. Holy. J. Appl. Cryst. 47, 1889 (2014)
- Y. Tanaka, Y. Krockenberger, Y. Kunihashi, H. Sanada, H. Omi, H. Gotoh, K. Oguri. Appl. Phys. Express 15, 6, 065502 (2022)
- Y. Nie, A.T. Barton, R. Addou,Y. Zheng, L.A. Walsh, S.M. Eichfeld, R. Yue, C. Cormier, C. Zhang, Q. Wang, C. Liang, J.A. Robinson, M. Kim, W. Vandenberghe, L. Colombo, P.-R. Cha,R.M. Wallace, C.L. Hinkle, K. Cho. Nanoscale 10, 31, 15023 (2018)
- S. Zimin, E. Gorlachev, I. Amirov. Inductively Coupled Plasma Sputtering: Structure of IV-VI Semiconductors. In: Encyclopedia of Plasma Technology. 1st ed. CRC Press, N.Y. (2017). P. 679-691. https://doi.org/10.1081/E-EPLT-120053966 https://www.routledgehandbooks.com/doi/10.1081/E-EPLT-120053966
- S.P. Zimin, I.I. Amirov, M.S. Tivanov, N.N. Kolesnikov, O.V. Korolik, L.S. Lyashenko, D.V. Zhyhulin, L.A. Mazaletskiy, S.V. Vasilev, O.V. Savenko. Phys. Solid State 65, 4, 671 (2023)
- G. Hao, X. Qi, L. Yang, Y. Liu, J. Li, L. Ren, F. Sun, J. Zhong. AIP Adv. 2, 1, 012114 (2012)
- Y. Zhao, M. de la Mata, R.L.J. Qiu, J. Zhang, X. Wen, C. Magen, X.P.A. Gao, J. Arbiol, Q. Xiong. Nano Res. 7, 9, 1243 (2014)
- W. Lu, Y. Ding, Y. Chen, Z.L. Wang, J. Fang. J. Am. Chem. Soc. 127, 28, 10112 (2005)
- Y. Hosokawa, K. Tomita, M. Takashiri. Sci. Rep. 9, 10790 (2019)
- P. Sigmund. Elements of sputtering theory. In: Nanofabrication by Ion-Beam Sputtering / Eds T. Som, D. Kanjilal. Pan Stanford Publishing (2013). P. 1-40. https://doi.org/10.4032/9789814303767
- W. Richter, C.R. Becker. Phys. Status Solidi B 84, 619 (1977)
- W. Kullmann, J. Geurts, W. Richter, N. Lehner, H. Rauh, U. Steigenberger, G. Eichhorn, R. Geick. Phys. Status Solidi B 125, 131 (1984)
- V.V. Sobolev, S.D. Shutov, Y.V. Popov, S.N. Shestatskii. Phys. Status Solidi B 30, 349 (1968)
- D.L. Greenaway, G. Harbeke. J. Phys. Chem. Solids 26, 10, 1585 (1965)
- P. Pecheur, G. Toussaint. Phys. Lett. A 135, 3, 223 (1989)
- I.G. Austin. Proc. Phys. Soc. 72, 4, 545 (1958)
- Al.L. Efros, A.L. Efros. FTP 16, 7, 1209 (1982). (in Russian)
- I.E. Tyschenko, V.A. Volodin. FTP 46, 10, 1309 (2012). (in Russian)
- Y. Saberi, S.A. Sajjadi, H. Mansouri. J. Mater. Sci.: Mater. Electron. 31, 18988 (2020)
- P. Srivastava, K. Singh. J. Exp. Nanosci. 9, 10, 1064 (2014)
- J. Dheepa, R. Sathyamoorthy, S. Velumani. Mater. Charact. 58, 8-9, 782 (2007).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.