Modification of the technique and main characteristics of piezoelectric ceramics BiScO3-PbTiO3
	
	
Guk E.G.
1, Smirnova E.P.
1, Klimov V.N.
2, Pankratiev P.A.
1, Zaitseva N.V.
1, Sotnikov A.V.
1, Mukhin E.E.
 1
11Ioffe Institute, St. Petersburg, Russia
2Central Research Institute of Structural Materials Prometey, National Research Centre Kurchatov Institute, St. Petersburg, Russia
Email: esmirnoffa@gmail.com, Ais-berg87@mail.ru, pavel-pankratiev@yandex.ru, nvz47@yandex.ru, andrew.sotnikov2014@yandex.ru, e.mukhin@mail.ioffe.ru
 
A modified technique for ceramics manufacturing without forced cooling from high-temperature first stage to the low-temperature second stage is proposed. The effect of the cooling regime between two sintering stages on the piezoelectric constants was investigated.This method was used to synthesize high-temperature piezoelectric ceramics 0.36BiScO3-0.64PbTiO3. Structural and piezoelectric parameters of ceramics were studied. It is shown that the obtained ceramics have a tetragonal structure (P4mm) and a composition close to the morphotropic phase boundary, just like the solid solution synthesized by traditional one-step technique. Ceramics synthesized by modified technique are characterized by high density, up to 97% of theoretical value. The average grain sizes of ceramics are in the range of 0.8-1.0 μm. The obtained value of the piezoelectric constant d33 of samples synthesized by the modified technique reaches 525 pC/N. Keywords: piezoelectric ceramics, two step sintering method, optimization. 
- K. Okazaki. Ceramic Engineering for Dielectrics. Gakken-sha Publishing, Tokyo (1969)
- A.J. Bell. J. Eur. Ceram. Soc. 28, 7, 1307 (2008)
- X.-H. Wang, I.-W. Chen, X.-Y. Deng, Y.-D. Wang, L.-T. Li. J. Adv Ceram. 4, 1, 1 (2015)
- D. Bochenek, A. Chrobak, G. Dercz. Materials 15, 23, 8461 (2022)
- M.A. Marakhovsky, A.A. Panich. V sb. tr. nf. "Komp'yuterbye i informatsionnye tekhnologii v nauke, inzhenerii i upravlenii "KOMTEKH-2022" Takanrog, 8-10 iyunya (2022). (in Russian)
- R.E. Eitel, C.A. Randall, T.R. Shrout, Seung-Eekpark. Jpn. J. Appl. Phys. 41, Part 1, 4A, 2099 (2002)
- J. Chaigneau, J.M. Kiat, C. Malibert, C. Bogicevic. Phys. Rev. B 76, 9, 094111 (2007)
- Y. Dong, Z. Zhou, R. Liang, X. Dong. J. Am. Ceram. Soc. 103, 9, 4785 (2020)
- I.W. Chen, X.H. Wang. Nature 404, 6774, 168 (2000)
- T.T. Zou, X.H. Wang, W. Zhao, L.T. Li. J. Am. Ceram. Soc. 91, 1, 121 (2008)
- H. Amori n, R. Jimenez, J. Ricote, T. Hungri a, A. Castro, M. Alguero. J. Phys. D 43, 28, 285401 (2010)
- I. Favero, K. Karrai. Nature Photon. 3, 4, 201 (2009)
- X. Gao, J. Yang, J. Wu, X. Xin, Z. Li, X. Yuan, X. Shen, S. Dong. Adv. Matter. Technol. 5, 1, 1900716 (2019)
- N. Savage. Nature Photon. 2, 10, 636 (2008)
- T. Bifano. Nature Photon. 5, 1, 21 (2009)
- S. Chen, X. Dong, C. Mao, F. Cao. J. Am. Ceram. Soc. 89, 10, 3270 (2006)
- E.P. Smirnova, V.N. Klimov, E.G. Guk, P.A. Pankratev, N.V. Zaitseva, A.V. Sotnikov, E.E. Mukhin. FTT 65, 11, 1971 (2023). (in Russian)
- U. Sutharsini, M. Thanihaichelvan, R. Sing. (2018). https://doi.org/10.5772/68083
- Z. Dai, J. Xie, W. Liu, S. Ge, M. Fang, D. Lin, L. Pang, H. Ji, S. Zhou, X. Ren. Mater. Lett. 241, 8, 55 (2019)
- A.A. Panich, S.N. Svirskaya, E.V. Karyukov, A.V. Skrylev, A.Yu. Malykhin, T.V. Votinova. Sovremennye problemy nauki i obrazovaniya, 3 (2014). (in Russian). https://science-education.ru/ru/article/view?id=13149
- U. Czubayko, V. Sursaeva, G. Gottstein, L. Shvindlerman. Acta Mater. 46, 16, 5863 (1998)
- G. Gottstein, A. King, L. Shvindlerman. Acta Mater. 48, 2, 397 (2000)
- M. Wegner, J. Leuthold, M. Peterlechner, X. Song, S.V. Divinski, G. Wilde. J. Appl. Phys. 116, 9, 093514 (2014)
		
			Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
		
		
			Дата начала обработки статистических данных - 27 января 2016 г.