Physics of the Solid State
Volumes and Issues
Functionalization of MnFe2O4 magnetic nanoparticles for biomedical applications in magnetic fluid
Kamzin A. S.1, Semenov V. G.2, Kamzina L. S.1
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: ASKam@mail.ioffe.ru

PDF
The properties of magnetic nanoparticles (MNP) MnFe2O4 synthesized by the polyol method and then functionalized with 3-aminopropyltriethoxysilane (APTES) have been studied. The aim of the work is to create MNCs for magnetic fluid in biomedical applications, in particular for magnetic hyperthermic therapy of malignant tumors. The properties of the obtained particles were studied using X-ray diffraction and Mossbauer spectroscopy, which confirmed the single-phase nature of both MnFe2O4 MNP and functionalized MnFe2O_4@APTES composites. From the structural analysis, it was found that the average size of the synthesized particles is ~ 13 nm, which is consistent with the data of the Messbauro studies. Magnetic and Mossbauer studies have shown that both MnFe2O4 MNPCS and MnFe2O_4@APTES composites are superparamagnetic at room temperature. The functionalization (coating) of particles leads to a decrease in the effective magnetic field values compared to those observed in MnFe2O4 without coating, which is consistent with published data on a decrease in the magnetization of the MnFe2O_4@APTES composite. The decrease in magnetization and effective fields is explained by the fact that when MnFe2O4 MNP is functionalized, the APTES material covers the surface layer of particles and magnetic dipole interactions decrease. Keywords: polyol synthesis of MnFe2O4, nanoparticles, functionalization (coating) of APTES particles. The Mossbauer studies.
  1. S.R. Patade, D.D. Andhare, S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, K.M. Jadhav. Ceram. Int. 46, 16, Pt. A, 25576 (2020). https://doi.org/10.1016/j.ceramint.2020.07.029
  2. A. Baki. F. Wiekhorst, R. Bleul. Bioengineering 8, 134 (2021). https://doi.org/10.3390/bioengineering8100134
  3. Clinical Applications of Magnetic Nanoparticles / Ed. Nguyen T.K. Thanh. CRC Press Taylor \& Francis Group (2018). P. 495
  4. M.M. Cruz, L.P. Ferreira, J. Ramos, S.G. Mendo, A.F. Alves, M. Godinho, M.D. Carvalho. J. Alloys Comp. 703, 370 (2017). https://doi.org/10.1016/j.jallcom.2017.01.297
  5. B. Aslibeiki, P. Kameli, H. Salamati, G. Concas, M.S. Fernandez, A. Talone, G. Muscas, D. Peddis. Beilstein J. Nanotechnol. 10, 856 (2019)
  6. K. Islam, M. Haque, A. Kumar, A. Hoq, F. Hyder, S.M. Hoque. Nanomaterials 10, 2297 (2020)
  7. V. Narayanaswamy, I.A. Al-Omari, A.S. Kamzin, B. Issa, H.O. Tekin, H. Khourshid, H. Kumar, A. Mallya, S. Sambasivam, I.M. Obaidat. Nanomaterials 11, 1231 (2021)
  8. X. Wang, X. Kan, X. Liu, S. Feng, G. Zheng, Z. Cheng, W. Wang, Z. Chen, C. Liu. Mater. Today Commun. 25, 101414 (2020)
  9. A.S. Kamzin. V.G. Semenov, I.A. Al-Omari, V. Narayanaswamy, B. Issa. Phys. Solid State 65, 8, 1363 (2023). DOI: 10.61011/PSS.2023.08.56586.122
  10. K.M. Srinivasamurthy, V.J. Angadi, S.P. Kubrin, S. Matteppanavar, D.A. Sarychev, P. Mohan Kumar, H.W. Azale, B. Rudraswamy. Ceram. Int. 44, 9194 (2018)
  11. F.G. da Silva, J. Depeyrot, A.F.C. Campos, R. Aquino, D. fiorani, D. Peddis. J. Nanosci. Nanotechn. 19, 4888 (2019)
  12. T. Dippong, E.A. Levei, O.C. Goga, D. Toloman. G. Borodi. J. Therm. Anal. Calorimetry 136, 1587 (2019)
  13. A. Manohar, D.D. Geleta, C. Krishnamoorthi, J. Lee. Ceram. Int. 46, 28035 (2020)
  14. C.R. Alves, R. Aquino, J. Depeyrot, F.A. Tourinho, E. Dubois, R. Perzynski. J. Mater. Sci. 42, 2297 (2007). DOI: 10.1007/s10853-006-0601-y
  15. R.M. Tripathi, S. Mahapatra, R. Raghunath, V.N. Sastry, T.M. Krishnamoorthy. Sci. Total Environ 250, 43 (2000)
  16. P.R. Ghutepatil, A.B. Salunkhe, V.M. Khot, S.H. Pawar. Chem. Papers 73, 2189 (2019). https://doi.org/10.1007/s11696-019-00768-z
  17. G. Kandasamy. Nanotechnology 30, 50, 502001 (2019). https://doi.org/10.1088/1361-6528/ab3f17
  18. A.K. Gupta, M. Gupta. Biomaterials 26, 3995 (2005)
  19. E.A. Smith, W. Chen. Langmuir 24, 12405 (2008)
  20. M.H. Mashhadizadeh, M. Amoli-Diva. J. Nanomed. Nanotechol. 3, 139 (2010).
  21. B. Cortis-Llanos, S.M. Ocampo, L. de la Cueva, G.F. Calvo, J. Belmonte-Beitia, L. Pirez, G. Salas, A. Ayuso-Sacido. Nanomaterials 11, 2888 (2021). https://doi.org/10.3390/nano11112888
  22. W. Cai, J. Wan. J. Colloid. Interface Sci. 305, 366 (2007)
  23. Z. Beji, A. Hanini, L.S. Smiri, J. Gavard, K. Kacem, F. Villain, J.M. Greneche, F. Chau, S. Ammar. Chem. Mater. 22, 5420 (2010)
  24. A. Ebrahiminezhad, Y. Ghasemi, S. Rasoul-Amini, J. Barar, S. Davarana. Colloids Surf. B 102, 534 (2013)
  25. Mossbauer Spectroscopy Applied to Magnetism and Material Science / Eds. G.J. Long, F. Grandjean.Plenum Press, N.Y. (1993). 479 p
  26. Ferrite Nanostructured Magnetic Materials Technologies and Applications Ed. J.P. Singh, K.H. Chae, R.C. Srivastava, O.F. Caltun. Woodhead Publishing (2023). 926 p
  27. A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Solid State 65, 3, 470 (2023). DOI: 10.21883/PSS.2023.03.55591.544
  28. A.S. Kamzin, V.G. Semenov, L.S. Kamzina. FTT 66, 3, 482 (2024). (in Russian)
  29. V.G. Semenov, V.V. Panchuk. The Mossbauer Spectra Processing MossFit software. Chast. soobschenie
  30. C. Pereira, A. M. Pereira, C. Fernandes, M. Rocha, R. Mendes, M.P. Fernandez-Garci a, A. Guedes, P.B. Tavares, J-M. Greneeche, J.P. Araujo, C. Freire. Chem. Mater. 24, 1496 (2012)
  31. C.V. Ramana, Y.D. Kolekar, K.K. Bharathi, B. Sinha, K. Ghosh. J. Appl. Phys. 114, 183907 (2013)
  32. P. Scherrer. Gottinger Nachrichten Gesell 2, 98 (1918)
  33. A. Patterson. Phys. Rev. 56, 10, 978 (1939). DOI: 10.1103/PhysRev.56.978
  34. A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. Phys. Solid State 64, 10, 1559 (2022). DOI: 10.21883/PSS.2022.10.54249.391
  35. Y.H. Li, T. Kouh, I.B. Shim, Ch.S. Kim. J. App. Phys. 111, 07B544 (2012). DOI: 10.1063/1.3687007
  36. B. Kalska, J.J. Paggel, P. Fumagalli, J. Rybczynski, D. Satula, M. Hilgendorff, M. Giersig. J. App. Phys. 95, 1343 (2004). DOI: 10.1063/1.1637134
  37. S.K. Shaw, J. Kailashiya, Santosh K. Gupta, C.L. Prajapat, Sher Singh Meena, D. Dash, P. Maitig, N.K. Prasada. J. All. Comp. 899, 163192 (2022). https://doi.org/10.1016/j.jallcom.2021.163192
  38. M. Popa, P. Bruna, D. Crespo, M. Jose, C. Moreno. J. Am. Ceram. Soc., 91, 8, 2488 (2008). DOI: 10.1111/j.1551-2916.2008.02501.x
  39. A. Yang, C.N. Chinnasamy, J.M. Greneche, Y. Chen, S.D. Yoon, Z. Chen, K. Hsu, Z. Cai, K. Ziemer, C. Vittoria, V.G. Harris. Nanotechnology 20, 185704 (2009). DOI: 10.1088/0957-4484/20/18/185704
  40. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. J. Appl. Phys. 39, 1204 (1968)
  41. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. Phys. Rev. 187, 747 (1969)
  42. A.H. Morrish, K. Haneda, J. Magn. Magn. Mater. 35, 105 (1983)
  43. S. Morup, C.A. Oxborro, P.V. Hendriksen, M.S. Pedersen, M. Hanson, C. Johansson. J. Magn. Magn. Mater. 140-144, 409 (1995)
  44. W.B. Dlamini, J.Z. Msomi, T. Moyo. J. Magn. Magn. Mater. 373, 78 (2015). http://dx.doi.org/10.1016/j.jmmm.2014.01.066
  45. Y.H. Li, T. Kouh, I.-B. Shim, Ch.S. Kim. J. App. Phys. 111, 07B544 (2012). DOI: 10.1063/1.3687007
  46. S. Morup, H. Topsoe. App. Phys. 11, 63 (1976)
  47. M.A. Chuev. ZhETF 141, 698 (2012). (in Russian)
  48. Magnetic Spinels --- Synthesis, Properties and Applications. Ed. M.S. Seehra. 2017. doi:10.5772/63249. Perales-Perez, O., \& Cedefo-Mattei, Y. Optimizing Processing Conditions to Produce Cobalt Ferrite Nanoparticles of Desired Size and Magnetic Properties. Ch. 3. 2017. http://dx.doi.org/10.5772/66842
  49. K.L. Zaharieva, Z.P. Cherkezova-Zheleva, B.N. Kunev, I.G. Mitov, S.S. Dimova. Bulgar. Chem. Commun. 47, 261 (2015)
  50. S.B. Singh, Ch. Srinivas, B.V. Tirupanyam, C.L. Prajapat, M.R. Singh, S.S. Meena, Pramod Bhatte, S.M. Yusuf, D.L. Sastry. Ceram. Int. 42, 19188 (2016). http://dx.doi.org/10.1016/j.ceramint.2016.09
  51. A. Alomari, H.M. El Ghanem, A.-F. Lehlooh, I.M. Arafa, I. Bsoul. Sensors \& Transducers 192, 53 (2015)
  52. J.A. Celis, O.F. Olea Meji a, A. Cabral-Prieto, I. Garci a-Sosa, R. Derat-Escudero, E.M. Baggio-Saitovitch, M. Alzamora Camarena. Hyperfine Interact. 238, 43 (2017). DOI: 10.1007/s10751-017-1414-x
  53. B. Issa, I. Obaidat, B. Albiss, Y. Haik. Int. J. Mol. Sci. 14, 21266 (2013). http://www.mdpi.com/1422-0067/14/11/21266
  54. T. Muthukumaran, S.S. Pati, L.H. Singh, A.C. de Oliveira, V.K. Garg. J. Philip. App. Nanosci 8, 593 (2018). https://doi.org/10.1007/s13204-018-0715-y
  55. R. Ghosh, L. Pradhan, Y.P. Devi, S.S. Meena, R. Tewari, A. Kumar, S. Sharma, N.S. Gajbhiye, R.K. Vatsa, B.N. Pandey, R.S. Ningthoujam. J. Mater. Chem. 21, 13388 (2011)
  56. M.I.A.A. Maksoud, A. El-Ghandour, G.S. El-Sayyad, R.A. Fahim, A.H. El-Hanbal, M. Bekhit, E.K. Abdel-Khale, H.H. El-Bahnasawy, M.A. Elkodous, H. Ashour, A.S. Awed. J. Inorg. Organomet. Polym. Mater. 30, 3709 (2020). https://doi.org/10.1007/s10904-020-01523-8
  57. S. M rup, F. B dker, P.V. Hendriksen, S. Linderoth. Phys. Rev. B 52, 287 (1995)
  58. A.E. Berkowitz, W.J. Schuele, P.J. Flanders, J. Appl. Phys. 39, 1261 (1968). DOI: 10.1103/physrevlett.27.1140
  59. L. Neel. J. Phys. Rad. 15, 4, 225 (1954)
  60. A.S. Kamzin, L.A. Grigor'ev. JETP Lett. 57, 9, 557 (1993)
  61. A.S. Kamzin, L.A. Grigor'ev. ZETP 77, 4, 658 (1993)
  62. J.M.D. Coey. Phys. Rev. Lett. 27, 17, 1140 (1971)
  63. A.S. Kamzin, V.P. Rusakov, L.A. Grigoriev. Int. Conf. USSR. Proceed. Part II, 271 (1988)
  64. A.S. Kamzin, L.A. Grigor'ev. Sov. Tech. Phys. Lett. 6, 6, 417 (1990)
  65. A.S. Kamzin, L.A. Grigor'ev. Sov. Tech. Phys. 35, 7, 840 (1990)
  66. F. Schaaf, U. Gonser. Hyperfine Interact. 57, 1-4, 2101 (1990)
  67. U. Gonzer, P. Schaaf, F. Aubertin. Hyperfine Interact. 66, 1-4, 95 (1991)
  68. A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. JETP 84, 4, 788 (1997)
  69. A.S. Kamzin. JETP 89, 5, 891 (1999)
  70. A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. Phys. Solid State 41, 3, 433 (1999)
  71. A.S. Kamzin, V.L. Rozenbaum, L.P. Ol'khovik. JETP Lett. 67, 10, 843 (1998)
  72. A.S. Kamzin, L.P. Ol'khovik. Phys. Solid State 41, 10, 1658 (1999)
  73. A.S. Kamzin, I.M. Obaidat, A.A. Valiullin, V.G. Semenov, I.A. Al-Omari. Phys. Solid State 62, 10, 1933 (2020). DOI: https://link.springer.com/article/10.1134/ S1063783420100157
  74. K. Haneda, A.H. Morrish. J. Appl. Phys. 63, 8, 4258 (1988). DOI: 10.1063/1.340197
  75. S. M rup, M.F. Hansen, C. Frandsen. Magnetic Nanoparticles. 2 nd ed. Elsevier Inc. (2018). DOI: 10.1016/B978-0-12-803581-8.11338-4
  76. Y. Yafel, C. Kittel. Phys. Rev. 87, 290 (1952)
  77. M. Eibschuts, S. Shtrikman. J. Appl. Phys. 39, 997 (1968)
  78. R.H. Lindquist, G. Constabaris, W. Kundig, A.M. Portis. J. Appl. Phys. 39, 1001 (1968)
  79. M.A. Polikarpov, V.M. Cherepanov, M.A. Chuev, S.Yu. Shishkov, S.S. Yakimov. J. Phys.: Conf. Ser. 217, 012115 (2010). DOI: 10.1088/1742-6596/217/1/012115
  80. M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 1, 178 (2012)
  81. G.N. Konygin, O.M. Nemtsova, V.E. Porsev. Zhurn. prikl. spektroskopii 86, 3, 374 (2019). (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru