Human soft tissue phantom for terahertz imaging and spectroscopy
Kucheryavenko A. S. 1, Dolganova I. N. 1, Chernomyrdin N. V.2, Gavdush A. A.2, Il'enkova D. R.2, Rybnikov D. D.2, Masalov V. M.1, Tuchin V. V.3,4,5, Zaytsev K. I.2
1Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
2Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
3Saratov State University, Saratov, Russia
4Tomsk State University, Tomsk, Russia
5Institute of Precision Mechanics and Control, Russian Academy of Sciences, Saratov, Russia
Email: ans.kucher@mail.ru

PDF
Over the past decades, terahertz radiation has found many biomedical applications, such as marker-free diagnosis of malignant tumors, monitoring wound healing, studying brain pathologies, monitoring graft viability, etc. Most of these applications assume that soft tissues are optically homogeneous in the terahertz wavelength range, and the marker of the pathological process is the differences in the values of the complex dielectric permittivity obtained within the framework of the formalism of the effective medium theory. Meanwhile, recent advances in terahertz imaging with subwavelength spatial resolution have made it possible to detect spatial heterogeneities in the distribution of complex dielectric permittivity with dimensions comparable to the terahertz wavelength in neural, fibrous, muscle and other types of tissue. The presence of such contrasting inclusions can lead to the effects of scattering of terahertz waves at their boundaries. This raises the problem of studying the phenomena of absorption and scattering of terahertz waves in soft tissues. To solve it, it is necessary to use a phantom with previously known parameters. At the moment, there are no phantoms with scattering properties for the terahertz range. In the interests of this task, a tissue-simulating phantom was proposed in this work, which has the shape of a gelatin plate and is a highly absorbent hydration matrix into which silicon dioxide (SiO2) microspheres are embedded with a lower refractive index and absorption coefficient, as well as subwavelength or mesoscale diameters. The terahertz images of this phantom are similar to those of a number of soft tissues, which allows its use in studies of new methods of terahertz imaging and spectroscopy. Keywords: terahertz radiation, biological tissue phantom, terahertz imaging, subwavelength spatial resolution, Abbe diffraction limit, solid immersion effect.
  1. S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, P. Belov. Laser Photon Rev., 11 (1), 1600199 (2017). DOI: 10.1002/lpor.201600199
  2. H. Guerboukha, K. Nallappan, M. Skorobogatiy. Adv. Opt. Photonics, 10 (4), 843 (2018). DOI: 10.1364/AOP.10.000843
  3. X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, Y. Luo. Trends Biotechnol., 34 (10), 810 (2016). DOI: 10.1016/j.tibtech.2016.04.008
  4. H. Lindley-Hatcher, R.I. Stantchev, X. Chen, A.I. Hernandez-Serrano, J. Hardwicke, E. Pickwell-MacPherson. Appl. Phys. Lett., 118 (23), 230501 (2021). DOI: 10.1063/5.0055259
  5. Z. Yan, L.-G. Zhu, K. Meng, W. Huang, Q. Shi. Trends Biotechnol., 40 (7), 816 (2022). DOI: 10.1016/j.tibtech.2021.12.002
  6. K.I. Zaytsev, I.N. Dolganova, N. V. Chernomyrdin, G.M. Katyba, A.A. Gavdush, O.P. Cherkasova, G.A. Komandin, M.A. Shchedrina, A.N. Khodan, D.S. Ponomarev, I.V. Reshetov, V.E. Karasik, M. Skorobogatiy, V.N. Kurlov, V.V. Tuchin. J. Optics, 22 (1), 13001 (2019). DOI: 10.1088/2040-8986/ab4dc3
  7. O. Cherkasova, M. Nazarov, A. Shkurinov. Opt. Quantum Electron., 48, 217 (2016). DOI: 10.1007/s11082-016-0490-5
  8. G.G. Hernandez-Cardoso, L.F. Amador-Medina, G. Gutierrez-Torres, E.S. Reyes-Reyes, C.A.B. Marti nez, C.C. Espinoza, J.A. Cruz, I. Salas-Gutierrez, B.O. Murillo-Ortiz, E. Castro-Camus. Sci. Rep., 12, 3110 (2022). DOI: 10.1038/s41598-022-06996-w
  9. H. Zhao, Y. Wang, L. Chen, J. Shi, K. Ma, L. Tang, D. Xu, J. Yao, H. Feng, T. Chen. J. Biomed. Opt., 23 (3), 36015 (2018). DOI: 10.1117/1.JBO.23.3.036015
  10. N. Bajwa, S. Sung, D.B. Ennis, M.C. Fishbein, B.N. Nowroozi, D. Ruan, A. Maccabi, J. Alger, M.A.St. John, W.S. Grundfest, Z.D. Taylor. IEEE Trans. Biomed. Eng., 64 (11), 2682 (2017). DOI: 10.1109/TBME.2017.2658439
  11. N. Bajwa, J. Au, R. Jarrahy, S. Sung, M.C. Fishbein, D. Riopelle, D.B. Ennis, T. Aghaloo, M.A. St.-John, W.S. Grundfest, Z.D. Taylor. Biomed. Opt. Express, 8 (1), 460 (2017). DOI: 10.1364/BOE.8.000460
  12. J. Wang, Q. Sun, R.I. Stantchev, T.-W. Chiu, A.T. Ahuja, E. Pickwell-MacPherson. Biomed. Opt. Express, 10 (7), 3584 (2019). DOI: 10.1364/BOE.10.003584
  13. X. Ding, G. Costa, A.I. Hernandez-Serrano, R.I. Stantchev, G. Nurumbetov, D.M. Haddleton, E. Pickwell-MacPherson. Biomed. Opt. Express, 14 (3), 1146 (2023). DOI: 10.1364/BOE.473097
  14. E.N. Iomdina, G.N. Goltsman, S.V. Seliverstov, A.A. Sianosyan, K.O. Teplyakova, A.A. Rusova. J. Biomed. Opt., 21 (9), 97002 (2016). DOI: 10.1117/1.JBO.21.9.097002
  15. E.N. Iomdina, S.V. Seliverstov, K.O. Teplyakova, E.V. Jani, V.V. Pozdniakova, O.N. Polyakova, G.N. Goltsman. J. Biomed. Opt., 26 (4), 43010 (2021). DOI: 10.1117/1.JBO.26.4.043010
  16. N.V. Chernomyrdin, G.R. Musina, P.V. Nikitin, I.N. Dolganova, A.S. Kucheryavenko, A.I. Alekseeva, Y. Wang, D. Xu, Q. Shi, V.V. Tuchin, K.I. Zaytsev. Opto-Electron. Advances, 6, 220071 (2023). DOI: 10.29026/oea.2023.220071
  17. O.P. Cherkasova, D.S. Serdyukov, E.F. Nemova, A.S. Ratushnyak, A.S. Kucheryavenko, I.N. Dolganova, G. Xu, M. Skorobogatiy, I.V. Reshetov, P.S. Timashev, I.E. Spektor, K.I. Zaytsev, V.V. Tuchin. J. Biomed. Opt., 26 (9), 90902 (2021). DOI: 10.1117/1.JBO.26.9.090902
  18. O.A. Smolyanskaya, N.V. Chernomyrdin, A.A. Konovko, K.I. Zaytsev, I.A. Ozheredov, O.P. Cherkasova, M.M. Nazarov, J.-P. Guillet, S.A. Kozlov, Yu.V. Kistenev, J.-L. Coutaz, P. Mounaix, V.L. Vaks, J.-H. Son, H. Cheon, V.P. Wallace, Yu. Feldman, I. Popov, A.N. Yaroslavsky, A.P. Shkurinov, V.V. Tuchin. Prog. Quantum Electron., 62, 1 (2018). DOI: 10.1016/j.pquantelec.2018.10.001
  19. U. M ller, D.G. Cooke, K. Tanaka, P.U. Jepsen. J. Opt. Sci. Am. B, 26 (9), A113 (2009). DOI: 10.1364/JOSAB.26.00A113
  20. I. Popov, P.B. Ishai, A. Khamzin, Y. Feldman. Phys. Chem. Chem. Phys., 18 (20), 13941 (2016). DOI: 10.1039/C6CP02195F
  21. E. Pickwell, B.E. Cole, A.J. Fitzgerald, V.P. Wallace, M. Pepper. Appl. Phys. Lett., 84 (12), 2190 (2004). DOI: 10.1063/1.1688448
  22. K.S. Cole, R.H. Cole. J. Chem. Phys., 9 (4), 341 (2004). DOI: 10.1063/1.1750906
  23. K.S. Cole, R.H. Cole. J. Chem. Phys., 10 (2), 98 (2004). DOI: 10.1063/1.1723677
  24. D.W. Davidson, R.H. Cole. J. Chem. Phys., 18 (10), 1417 (2004). DOI: 10.1063/1.1747496
  25. S. Havriliak, S. Negami. Polymer (Guildf), 8, 161 (1967). DOI: 10.1016/0032-3861(67)90021-3
  26. A.A. Gavdush, N.V. Chernomyrdin, G.A. Komandin, I.N. Dolganova, P.V. Nikitin, G.R. Musina, G.M. Katyba, A.S. Kucheryavenko, I.V. Reshetov, A.A. Potapov, V.V. Tuchin, K.I. Zaytsev. Biomed. Opt. Express, 12 (1), 69 (2021). DOI: 10.1364/BOE.411025
  27. S. Yamaguchi, Y. Fukushi, O. Kubota, T. Itsuji, T. Ouchi, S. Yamamoto. Phys. Med. Biol., 61 (18), 6808 (2016). DOI: 10.1088/0031-9155/61/18/6808
  28. N.V. Chernomyrdin, M. Skorobogatiy, A.A. Gavdush, G.R. Musina, G.M. Katyba, G.A. Komandin, A.M. Khorokhorov, I.E. Spektor, V.V. Tuchin, K.I. Zaytsev. Optica, 8 (11), 1471 (2021). DOI: 10.1364/OPTICA.439286
  29. G.C. Walker, E. Berry, S.W. Smye, D.S. Brettle. Phys. Med. Biol., 49 (21), N363 (2004). DOI: 10.1088/0031-9155/49/21/N01
  30. B.C.Q. Truong, A.J. Fitzgerald, S. Fan, V.P. Wallace, V.I.P.W. Allace, B.C.Q. Truong, A.J. Fitzgerald, S. Fan, V.P. Wallace. Biomed. Opt. Express, 9 (3), 1334 (2018). DOI: 10.1364/BOE.9.001334
  31. A. Chen, O.B. Osman, Z.B. Harris, A. Abazri, R. Honkanen, M.H. Arbab. Biomed. Opt. Express, 11 (3), 1284 (2020). DOI: 10.1364/BOE.382826
  32. G.C. Walker, E. Berry, S.W. Smye, N.N. Zinov'ev, A.J. Fitzgerald, R.E. Miles, M. Chamberlain, M.A. Smith. Phys. Med. Biol., 49 (10), 1853 (2004). DOI: 10.1088/0031-9155/49/10/002
  33. G.G. Hernandez-Cardoso, A.K. Singh, E. Castro-Camus. Appl. Opt., 59 (13), D6 (2020). DOI: 10.1364/AO.382383
  34. A. Tamminen, M. Baggio, I. Nefedova, Q. Sun, J. Anttila, J. Ala-Laurinaho, E.R. Brown, V.P. Wallace, E. Pickwell-MacPherson, T. Maloney, M. Salkola, S.X. Deng, Z.D. Taylor. IEEE Trans. Terahertz Sci. Technol., 11 (5), 538 (2021). DOI: 10.1109/TTHZ.2021.3088273
  35. A. Tamminen, M. Baggio, I.I. Nefedova, Q. Sun, S.A. Presnyakov, J. Ala-Laurinaho, E.R. Brown, V.P. Wallace, E. Pickwell-MacPherson, T. Maloney, N.P. Kravchenko, M. Salkola, S.X. Deng, Z.D. Taylor. IEEE Trans. Terahertz Sci. Technol., 11 (6), 647 (2021). DOI: 10.1109/TTHZ.2021.3099058
  36. A.A. Bakulina, G.R. Musina, A.A. Gavdush, Y.M. Efremov, G.A. Komandin, M. Vosough, A.I. Shpichka, K.I. Zaytsev, P.S. Timashev. Soft Matter., 19 (13), 2430 (2023). DOI: 10.1039/D2SM01504H
  37. K. Okada, K. Serita, Q. Cassar, H. Murakami, G. MacGrogan, J.-P. Guillet, P. Mounaix, M. Tonouchi. J. Phys.: Photonics, 2 (4), 44008 (2020). DOI: 10.1088/2515-7647/abbcda
  38. Z. Li, S. Yan, Z. Zang, G. Geng, Z. Yang, J. Li, L. Wang, C. Yao, H.-L. Cui, C. Chang, H. Wang. Cell Prolif., 53 (4), e12788 (2020). DOI: 10.1111/cpr.12788
  39. K. Okada, Q. Cassar, H. Murakami, G. MacGrogan, J.-P. Guillet, P. Mounaix, M. Tonouchi, K. Serita. Optics Continuum, 1 (3), 527 (2022). DOI: 10.1364/OPTCON.448444
  40. A.S. Kucheryavenko, N.V. Chernomyrdin, A.A. Gavdush, A.I. Alekseeva, P.V. Nikitin, I.N. Dolganova, P.A. Karalkin, A.S. Khalansky, I.E. Spektor, M. Skorobogatiy, V.V. Tuchin, K.I. Zaytsev. Biomed. Opt. Express, 12 (8), 5272 (2021). DOI: 10.1364/BOE.432758
  41. N.V. Chernomyrdin, D.R. Ilenkova, V.A. Zhelnov, A.I. Alekseeva, A.A. Gavdush, G.R. Musina, P.V. Nikitin, A.S. Kucheryavenko, I.N. Dolganova, I.E. Spektor, V.V. Tuchin, K.I. Zaytsev. Sci. Rep., 13, 16596 (2023). DOI: 10.1038/s41598-023-43857-6
  42. N.V. Chernomyrdin, M. Skorobogatiy, D.S. Ponomarev, V.V. Bukin, V.V. Tuchin, K.I. Zaytsev. Appl. Phys. Lett., 120 (11), 110501 (2022). DOI: 10.1063/5.0085906
  43. F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, K. Tanaka. Opt. Express, 19 (9), 8277 (2011). DOI: 10.1364/OE.19.008277
  44. R.I. Stantchev, B. Sun, S.M. Hornett, P.A. Hobson, G.M. Gibson, M.J. Padgett, E. Hendry. Sci. Adv., 2 (6), e1600190 (2016). DOI: 10.1126/sciadv.1600190
  45. L. Olivieri, L. Peters, V. Cecconi, A. Cutrona, M. Rowley, J. Gongora, A. Pasquazi, M. Peccianti. ACS Photonics, 10 (6), 1726 (2023). DOI: 10.1021/acsphotonics.2c01727
  46. P.C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S.E. Pinder, A.D. Purushotham, M. Pepper, V.P. Wallace. Opt. Express, 17 (15), 12444 (2009). DOI: 10.1364/OE.17.012444
  47. V.E. Ulitko, A.K. Zotov, A.A. Gavdush, G.M. Katyba, G.A. Komandin, I.E. Spektor, I.M. Shmytko, G.A. Emelchenko, I.N. Dolganova, M. Skorobogatiy, V.N. Kurlov, V.M. Masalov, K.I. Zaytsev. Opt. Mater. Express, 10 (9), 2100 (2020). DOI: 10.1364/OME.402185
  48. A.S. Kucheryavenko, I.N. Dolganova, A.A. Zhokhov, V.M. Masalov, G.R. Musina, V.V. Tuchin, N.V. Chernomyrdin, A.A. Gavdush, D.R. Il'enkova, S.V. Garnov, K.I. Zaytsev. Phys. Rev. Appl., 20 (5), 054050 (2023). DOI: 10.1103/PhysRevApplied.20.054050
  49. V.M. Masalov, N.S. Sukhinina, G.A. Emelchenko. Phys. Solid State, 53, 1135 (2011). DOI: 10.1134/S1063783411060229
  50. K.D. Hartlen, A.P.T. Athanasopoulos, V. Kitaev. Langmuir, 24, 1714 (2008). DOI: 10.1021/la7025285
  51. W. Stober, A. Fink, E. Bohn. J. Colloid Interface Sci., 26 (1), 62 (1968). DOI: 10.1016/0021-9797(68)90272-5
  52. A.A. Zhokhov, V.M. Masalov, N.S. Sukhinina, D.V. Matveev, P.V. Dolganov, V.K. Dolganov, G.A. Emelchenko. Opt. Mater (Amst), 49, 208 (2015). DOI: 10.1016/j.optmat.2015.09.019
  53. E.N. Samarov, A.D. Mokrushin, V.M. Masalov, G.E. Abrosimova, G.A. Emel'chenko. Phys. Solid State, 48, 1280 (2006). DOI: 10.1134/S1063783406070109
  54. N.V. Chernomyrdin, A.S. Kucheryavenko, E.N. Rimskaya, I.N. Dolganova, V.A. Zhelnov, P.A. Karalkin, A.A. Gryadunova, I.V. Reshetov, D.V. Lavrukhin, D.S. Ponomarev, V.E. Karasik, K.I. Zaytsev. Opt. Spectrosc., 126 (5), 560 (2019). DOI: 10.1134/S0030400X19050059
  55. G.R. Musina, N.V. Chernomyrdin, E.R. Gafarova, A.A. Gavdush, A.J. Shpichka, G.A. Komandin, V.B. Anzin, E.A. Grebenik, M.V. Kravchik, E.V. Istranova, I.N. Dolganova, K.I. Zaytsev, P.S. Timashev. Biomed. Opt. Express, 12 (9), 5368 (2021). DOI: 10.1364/BOE.433216
  56. N.V. Chernomyrdin, A.S. Kucheryavenko, G.S. Kolontaeva, G.M. Katyba, I.N. Dolganova, P.A. Karalkin, D.S. Ponomarev, V.N. Kurlov, I.V. Reshetov, M. Skorobogatiy, V.V. Tuchin, K.I. Zaytsev. Appl. Phys. Lett., 113 (11), 111102 (2018). DOI: 10.1063/1.5045480
  57. G.A. Komandin, S.V. Chuchupal, S.P. Lebedev, Y.G. Goncharov, A.F. Korolev, O.E. Porodinkov, I.E. Spektor, A.A. Volkov. IEEE Trans. Terahertz Sci. Technol., 3 (4), 440 (2013). DOI: 10.1109/TTHZ.2013.2255914
  58. M.J.E. Golay. Rev. Sci. Instruments, 18 (5), 347 (2004). DOI: 10.1063/1.1740948
  59. N.V. Chernomyrdin, M.E. Frolov, S.P. Lebedev, I.V. Reshetov, I.E. Spektor, V.L. Tolstoguzov, V.E. Karasik, A.M. Khorokhorov, K.I. Koshelev, A.O. Schadko, S.O. Yurchenko, K.I. Zaytsev. Rev. Sci. Instruments, 88 (1), 14703 (2017). DOI: 10.1063/1.4973764
  60. G.R. Musina, I.N. Dolganova, N.V. Chernomyrdin, A.A. Gavdush, V.E. Ulitko, O.P. Cherkasova, D.K. Tuchina, P.V. Nikitin, A.I. Alekseeva, N.V. Bal, G.A. Komandin, V.N. Kurlov, V.V. Tuchin, K.I. Zaytsev. J. Biophotonics, 13 (12), e202000297 (2020). DOI: 10.1002/jbio.202000297
  61. Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging, ed. by V.V. Tuchin, D. Zhu, E.A. Genina (CRC Press, Boca Raton, Florida, USA, 2022). DOI: 10.1201/9781003025252
  62. Y.-Y. Chen, M.M. Yeh. J. Formosan Medical Association, 120 (1, Part 1), 68 (2021). DOI: 10.1016/j.jfma.2020.07.006
  63. V. Lau, L. Ramer, M.E. Tremblay. Nat. Commun., 14, 1670 (2023). DOI: 10.1038/s41467-023-37304-3
  64. G. Chen, B. Zheng. Reproductive Biology \& Endocrinology, 19, 38 (2021). DOI: 10.1186/s12958-021-00724-1
  65. X. Chen, Q. Sun, J. Wang, H. Lindley-Hatcher, E. Pickwell-MacPherson. Adv. Photonics Res., 2 (1), 2000024 (2021). DOI: 10.1002/adpr.202000024

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru