Optical and optoelectronic properties of oxidized borophene and oxidized borophene based van der Waals heterostructures
Slepchenkov M. M. 1, Kolosov D.A. 1, Glukhova O.E. 1,2
1Saratov State University, Saratov, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: slepchenkovm@mail.ru, kolosovda@bk.ru, glukhovaoe@info.sgu.ru

PDF
In this paper, we used to carry out a predictive analysis of the possibility of controlling the optical and optoelectronic properties of van der Waals quasi-2D heterostructures formed by buckled triangular borophene and monolayers of graphene-like gallium nitride GaN and zinc oxide ZnO, due to the functionalization of borophene with oxygen. The appearance of an energy gap in the band structure of the studied borophene/GaN and borophene/ZnO van der Waals heterostructures, caused by the presence of a gap between the valence band and the conduction band in the electronic structure of oxidized (O-) borophene, is discovered. It is shown that in the case of light polarization in the direction perpendicular to the zigzag edge of the borophene atomic lattice, a peak with an intensity of about 30% appears in the visible range of the absorption spectrum of heterostructures based on O-borophene and GaN/ZnO monolayers. At the same time, for heterostructures with pure borophene, the absorption value in the visible range was no more than 5-10%. It is revealed that the profiles of the photocurrent spectrum of O-borophene/GaN and O-borophene/ZnO heterostructures have a similar shape to the spectra of O-borophene. It is predicted that O-borophene/GaN and O-borophene/ZnO heterostructures may be promising as sensitive elements of solar cells operating both on the Earth's surface and beyond. Keywords: density functional theory, absorption coefficient, photocurrent spectrum, light polarization, photovoltaics.
  1. P. Ares, K.S. Novoselov. Nano Mater. Sci., 4, 3 (2021). DOI: 10.1016/j.nanoms.2021.05.002
  2. J. Azadmanjiri, V.K. Srivastava, P. Kumar, Z. Sofer, J. Min. J. Gong. Appl. Mater. Today, 19, 100600 (2020). DOI: 10.1016/j.apmt.2020.100600
  3. X. Zhou, E.E. Rodriguez. Chem. Mater., 29, 5737 (2017). DOI: 10.1021/acs.chemmater.7b01561
  4. R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun, T.E. Mallouk, M. Terrones. Acc. Chem. Res., 48, 56 (2015). DOI: 10.1021/ar5002846
  5. G. Murali, J.K. Reddy Modigunta, Y.H. Park, J.H. Lee, J. Rawal, S.Y. Lee, I. In, S.J. Park. ACS Nano, 16, 13370 (2022). DOI: 10.1021/acsnano.2c04750
  6. L. Li, Y. He, L. Xu, H. Wang. Appl. Sci., 9, 5211 (2019). DOI: 10.3390/app9235211
  7. H. Xie, Z. Li, L. Cheng, A.A. Haidry, J. Tao, Y. Xu, K. Xu, J. Z. Ou. iScience, 25, 103598 (2022). DOI: 10.1016/j.isci.2021.103598
  8. M.C. Wang, C.C. Huang, C.H. Cheung, C.Y. Chen, S.G. Tan, T.W. Huang, Y. Zhao, Y. Zhao, G. Wu, Y.P. Feng, H. Wu, C. Chang. Ann. Der Phys., 532, 1900452 (2020). DOI: 10.1002/andp.201900452
  9. A.K. Geim, I.V. Grigorieva. Nature, 499, 419 (2013). DOI: 10.1038/nature12385
  10. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto. Science, 353, aac9439 (2016). DOI: 10.1126/science.aac94
  11. A. Di Bartolomeo. Nanomaterials, 10, 579 (2020). DOI: 10.3390/nano10030579
  12. J. Yao, G. Yanga. J. Appl. Phys., 131, 161101 (2022). DOI: 10.1063/5.0087503
  13. Z. Wang, B. Xu, S. Pei, J. Zhu, T. Wen, C. Jiao, J. Li, M. Zhang, J. Xia. Sci. China Inf. Sci., 65, 211401 (2022). DOI: 10.1007/s11432-021-3432-6
  14. Z.U.D. Babar, A. Raza, A. Cassinese, V. Iannotti. Molecules, 28, 2275 (2023). DOI: 10.3390/molecules28052275
  15. S.K. Chakraborty, B. Kundu, B. Nayak, S.P. Dash, P.K. Sahoo. iScience, 25, 103942 (2022). DOI: 10.1016/j.isci.2022.103942
  16. X. Zhou, X. Hu, J. Yu, S. Liu, Z. Shu, Q. Zhang, H. Li, Y. Ma, H. Xu, T. Zhai. Adv. Funct. Mater., 28, 1706587 (2018). DOI: 10.1002/adfm.201706587
  17. S. Liang, B. Cheng, X. Cui, F. Miao. Adv. Mater., 32, 1903800 (2020). DOI: 10.1002/adma.201903800
  18. Q. Tang, F. Zhong, Q. Li, J. Weng, J. Li, H. Lu, H. Wu, S. Liu, J. Wang, K. Deng, Y. Xiao, Z. Wang, T. He. Nanomaterials, 13, 1169 (2023). DOI: 10.3390/nano13071169
  19. P. Lin, J.K. Yang. J. Alloys Compd., 842, 155890 (2020). DOI: 10.1016/j.jallcom.2020.155890
  20. N. Shehzad, S. Saeed, I. Shahid, I. Khan, I. Saeed, J.A. Zapien, L. Zhang. RSC Adv., 12, 31456 (2022). DOI: 10.1039/D2RA03439E
  21. Y.V. Kaneti, D.P. Benu, X. Xu, B. Yuliarto, Y. Yamauchi, D. Golberg. Chem. Rev., 122, 1000 (2022). DOI: 10.1021/acs.chemrev.1c00233
  22. X. Liu, M.C. Hersam. Sci. Adv., 5, eaax6444 (2019). DOI: 10.1126/sciadv.aax644
  23. L. Li, J.F. Schultz, S. Mahapatra, X. Liu, C. Shaw, X. Zhang, M.C. Hersam, N. Jiang. J. Am. Chem. Soc., 143, 15624 (2021). DOI: 10.1021/jacs.1c04380
  24. R. Abbasi, R. Faez, A. Horri, M.K. Moravvej-Farshi. J. Appl. Phys., 132, 034302 (2022). DOI: 10.1063/5.0092647
  25. N. Katoch, A. Kumar, R. Sharma, P.K. Ahluwalia, J. Kumar. Phys. E: Low-Dimens. Syst. Nanostructures, 120, 113842 (2020). DOI: 10.1016/j.physe.2019.113842
  26. S. Jing, W. Chen, J. Pan, W. Li, B. Bian, B. Liao, G. Wang. Mater. Sci. Semicond. Process., 146, 106673 (2022). DOI: 10.1016/j.mssp.2022.106673
  27. J.W. Jiang, X.C. Wang, Y. Song, W.B. Mi. Appl. Surf. Sci., 440, 42 (2018). DOI: 10.1016/j.apsusc.2018.01.140
  28. M.M. Slepchenkov, D.A. Kolosov, O.E. Glukhova. Materials, 15, 4084 (2022). DOI: 10.3390/ma15124084
  29. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Phys. Rev. B, 46, 6671 (1992). DOI: 10.1103/PhysRevB.46.6671
  30. J.M. Soler, E. Artacho, J.D. Gale, A. Garci a, J. Junquera, P. Ordejon, D. Sanchez-Portal. J. Phys.: Condens. Matt., 14, 2745 (2002). DOI: 10.1088/0953-8984/14/11/302
  31. S. Grimme. J. Comput. Chem., 27, 1787 (2006). DOI: 10.1002/jcc.20495
  32. P. Pulay. Chem. Phys. Lett., 73, 393 (1980). DOI: 10.1016/0009-2614(80)80396-4
  33. H.J. Monkhorst, J.D. Pack. Phys. Rev. B, 13, 5188 (1976). DOI: 10.1103/PhysRevB.13.5188
  34. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton. Phys. Rev. B, 57, 1505 (1998). DOI: 10.1103/PhysRevB.57.1505
  35. E.N. Economou. Green's Functions in Quantum Physics, 3rd ed. (Springer, Berlin, 1983), p. 55-75. DOI: 10.1007/3-540-28841-4_4
  36. Y. He, N. Cheng, C. Chen, S.Y. Xiong, J.W. Zhao. Sci. China Technol. Sci., 62, 799 (2019). DOI: 10.1007/s11431-018-9385-x
  37. X. Liu, M.S. Rahn, Q. Ruan, B.I. Yakobson, M.C. Hersam. Nanotechnology, 33, 10 (2022). DOI: 10.1088/1361-6528/ac56bd
  38. National Renewable Energy Laboratory ( NREL). [Electronic source]. URL: https://www.nrel.gov/
  39. D.B. Seo, T.N. Trung, S.S. Bae, E.T. Kim. Nanomaterials, 11, 1585 (2021). DOI: 10.3390/nano11061585
  40. C.M. Went, J. Wong, P.R. Jahelka, M. Kelzenberg, S. Biswas, M.S. Hunt, A. Carbone, H.A. Atwater. Sci. Adv., 5, eaax6061 (2019). DOI: 10.1126/sciadv.aax60

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru