Physics of the Solid State
Volumes and Issues
Structure, microstructure, dielectric and piezoelectric properties of solid solution ceramics of a six-component system (1-y-a-z)(Na0.5K0.5NbO_3)-yLiNbO_3-a/2CdNb2O_6- zPb(Zr0.5Ti0.5)O3
 Andryushin K. P.1,2, Glazunova E. V.1, L.A. ShilkinaL. A.1,  NagaenkoA. V.3,  DudkinaS. I.1, Andryushina I. N.1,  Khasbulatov S. V.2,4, Reznichenko L. A.1
1Southern Federal University, Research Institute of Physics, Rostov-on-Don, Russia
2Kh. Ibragimov Complex Institute of the Russian Academy of Sciences, Groznyi, Russia
3Southern Federal University, Institute of High Technology and Piezo Technology, Rostov-on-Don, Russia
4A.A. Kadyrov Chechen State University, Institute of Mathematics, Physics and Information Technology, Grozny, Russia
Email: kpandryushin@gmail.com

PDF
For the first time, solid solutions of two sections of a six-component system KNN-LN-PZT-CdNbO6 of the form (1-y-a-z)(Na0.5K0.5NbO_3)-yLiNbO_3-a/2CdNb2O_6-zPb(Zr0.5Ti0.5)O3: were prepared by two-stage solid-phase synthesis followed by sintering using conventional ceramic technology: section I with y=0.05, a=0.025, 0.15≤ z < 0.50; section II with y =0.10, a=0.050, 0.15≤ z <0.50. X-ray diffraction revealed that all the studied experimental samples have pseudocubic symmetry. The microstructure of ceramic solid solutions is characterized by extreme inhomogeneity. An analysis of the dielectric, piezoelectric, and elastic properties (macroresponses) of the experimental samples allowed for the identification of a group of compositions with high relative permittivity values, which are promising for low-frequency applications. A conclusion is made about the feasibility of utilizing the proposed compositions in the design of electronic devices. Keywords: lead-free, (Na,K)NbO3, CdNb2O6, LiNbO3, ceramic.
  1. B. Jaffe, W. Cook, H. Jaffe. Piezoelectric Ceramics. Academic Press, N. Y. (1971). 317 p
  2. D. Berlincourt. Piezoelectric crystals and ceramics. In: Ultrasonic Transducer Materials: Piezoelectric Crystals and Ceramics / Ed. O.E. Mattiat. Plenum Press, London (1971). P. 63
  3. L.A. Reznichenko, I.A. Verbenko, L.A. Shilkina, A.V. Pavlenko, S.I. Dudkina, I.N. Andryushina, K.P. Andryushin, A.G. Abubakarov, T.V. Krasnyakova. Springer Proceed. Phys. 207, 3 (2018). https://doi.org/10.1007/978-3-319-78919-4_1
  4. C.C. Tsai, S.Y. Chu, C.K. Liang. J. Alloys Compd. 478, 1-2, 516 (2009). https://doi.org/10.1016/j.jallcom.2008.11.084
  5. A.V. Nagaenko, S.-H. Chang, K.P. Andryushin, L.A. Shilkina, M.I. Mazuritskiy, I.N. Andryushina, E.V. Glazunova, A.A. Pavelko, Y.A. Trusov, I.A. Verbenko, L.A. Reznichenko, I.A. Parinov. Heliyon 6, e03497 (2020). https://doi.org/10.1016/j.heliyon.2020.e03497
  6. A.Y. Dantsiger, N.V. Dergunova, S.I. Dudkina, E.G. Fesenko. Ferroelectrics 132, 1, 213 (1992). https://doi.org/10.1080/00150199208009087
  7. L.A. Reznichenko, A.Y. Dantsiger, O.N. Razumovskaya, S.I. Dudkina, I.P. Raevskii, L.A. Shilkina, A.N. Klevtsov. Inorg. Mater. 37, 12, 1289 (2001). https://doi.org/10.1023/a:1012934327319
  8. A. Savage. J. Appl. Phys. 37, 8, 3071 (1966). https://doi.org/10.1063/1.1703164
  9. K. Chen, Y. Zhu, Z. Liu, D. Xue. Molecules 26, 22, 1 (2021). https://doi.org/10.3390/molecules26227044
  10. E. Aleshin, R. Roy. J. Am. Ceram. Soc. 45, 1, 18 (1962). https://doi.org/10.1111/j.1151-2916.1962.tb11022.x
  11. B. Lewis, E.A.D. White. J. Electron. Control 1, 6, 646 (1956). https://doi.org/10.1080/00207215608961468
  12. K.-I. Kakimoto, K. Akao, Y. Guo, H. Ohsato. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 44, 9S, 7064 (2005). https://doi.org/10.1143/JJAP.44.7064
  13. Y. Guo, K.I. Kakimoto, H. Ohsato. Appl. Phys. Lett. 85, 18, 4121 (2004). https://doi.org/10.1063/1.1813636
  14. P.K. Panda, B. Sahoo. Ferroelectrics 474, 1, 128 (2015). https://doi.org/10.1080/00150193.2015.997146
  15. M.-G. Kang, W.-S. Jung, C.-Y. Kang, S.-J. Yoon. Actuators 5, 1, 5 (2016). https://doi.org/10.3390/act5010005
  16. G.L. Smith, J.S. Pulskamp, L.M. Sanchez, D.M. Potrepka, R.M. Proie, T.G. Ivanov, R.Q. Rudy, W.D. Nothwang, S.S. Bedair, C.D. Meyer, R.G. Polcawich. J. Am. Ceram. Soc. 95, 6, 1777 (2012). https://doi.org/10.1111/j.1551-2916.2012.05155.x
  17. O. Tokay, M. Yazi ci. Mater. Today Commun. 31, 103358 (2022). https://doi.org/10.1016/j.mtcomm.2022.103358
  18. J. Wu, D. Xiao, J. Zhu. Chem. Rev. 115, 7, 2559 (2015). https://doi.org/10.1021/cr5006809
  19. Q. Yin, S. Yuan, Q. Dong, C. Tian. J. Am. Ceram. Soc. 93, 1, 167 (2010). https://doi.org/10.1111/j.1551-2916.2009.03367.x
  20. K. Andryushin, L. Shilkina, I. Andryushina, A. Nagaenko, M. Moysa, S. Dudkina, L. Reznichenko. Mater. 14, 14, 4009 (2021). https://doi.org/10.3390/ma14144009
  21. K.P. Andryushin, L.A. Shilkina, I.N. Andryushina, M.O. Moysa, D.I. Rudsky, L.A. Reznichenko. Ceram. Int. 47, 1, 138 (2021). https://doi.org/10.1016/j.ceramint.2020.08.117
  22. A. Guinier. Theorie et Technique de la Radiocrystallographie, 2nd. ed. Dunod, Paris (1956) 736 p
  23. IEEE Standard on Piezoelectricity ANSI/IEEE Std 176-1987, N. Y. (1988). https://doi.org/10.1109/IEEESTD.1988.79638
  24. V.S. Urusov. Theory of Isomorphic Miscibility. Nauka, M. (1977). 251 p
  25. G.B. Bokiy. Vvedenie v kristallokhimiyu. Izd-vo MGU, M. (1954). 491 p. (in Russian)
  26. Powder Diffraction File. Data Cards. Inorganic Section. Set 37, card 1484. JCPDS, Swarthmore, PA, USA (1948)
  27. Powder Diffraction File. Data Cards. Inorganic Section. Set 25, card 443. JCPDS, Swarthmore, PA, USA (1948)
  28. Powder Diffraction File. Data Cards. Inorganic Section. Set 33, card 241. JCPDS, Swarthmore, PA, USA (1948)
  29. Powder Diffraction File. Data Cards. Inorganic Section. Set 33, card 240. JCPDS, Swarthmore, PA, USA (1948)
  30. Powder Diffraction File. Data Cards. Inorganic Section. Set 33, card 744. JCPDS, Swarthmore, PA, USA (1948)
  31. G.C. Vezzoli. Phys. Rev. B 26, 7, 3954 (1982). https://doi.org/10.1103/PhysRevB.26.3954
  32. L.A. Reznichenko, L.A. Shilkina, E.S. Gagarina, Y.I. Yuzyuk, O.N. Razumovskaya, A.V. Kozinkin. Crystallogr. Rep. 49, 5, 820 (2004). https://doi.org/10.1134/1.1803313

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru