X-ray surface guided modes on a boundary between two different periodical multilayer structures
Prudnikov I. R.1,2, Usmanov N. N.1
1Department of Physics, Lomonosov Moscow State University, Moscow, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
Email: prudnik@phys.msu.ru
On the basis of an analytical approach and with the help of numerical simulations, it is shown that the excitation of an X-ray surface guided mode is possible under certain conditions on a boundary between two different periodical multilayer structures (multilayer mirrors). This mode propagates along the boundary between the two structures and its intensity decreases exponentially with increasing the distance from a boundary surface deep into each of them. An indication of the appearance of the guided wave is a resonant dip in an X-ray specular reflectivity curve from a set of the two periodical multilayer mirrors that are placed consecutively, one after another, on a substrate. An influence of the thicknesses of films, forming one bilayer, and layer materials in the multilayer structures on peculiarities of a surface wave excitation is investigated. Keywords: periodical multilayer structure, interface, X-ray surface guided mode, Bragg reflection.
- H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988). DOI: 10.1007/BFb0048317
- R.W. Wood. Philos. Mag., 4 (21), 396 (1902). DOI: 10.1080/14786440209462857
- I.R. Shen. Printsipy nelineinoi optiki, pod. red. S.A. Akhmanova (Nauka, M., 1989). (in Russian)
- W.M. Robertson, M.S. May. Appl. Phys. Lett., 74 (13), 1800 (1999). DOI: 10.1063/1.123090
- M. Kaliteevski, I. Iorsh, S. Brand, R.A. Abram, J.M. Chamberlain, A.V. Kavokin, I.A. Shelykh. Phys. Rev. B, 76 (16), 165415 (2007). DOI: 10.1103/PhysRevB.76.165415
- A.P. Vinogradov, A.V. Dorofeenko, A.M. Merzlikin, A.A. Lisyansky. Usp. Fiz. Nauk., 180 (3), 249 (2010). DOI: 10.3367/UFNr.0180.201003b.0249
- E. Spiller, A. Segmuller. Appl. Phys. Lett., 24 (2), 60 (1974). DOI: 10.1063/1.1655093
- Y.P. Feng, S.K. Sinha, H.W. Deckman, J.B. Hastings, D.P. Siddons. Phys. Rev. Lett., 71 (4), 537 (1993). DOI: 10.1103/PhysRevLett.71.537
- S.I. Zheludeva, M.V. Kovalchuk, N.N. Novikova, A.N. Sosphenov, N. E. Malysheva, N.N. Salashchenko, Yu.Ya. Platonov, A.D. Akhsakhalyan. Crystallogr. Rep., 40 (1), 132 (1995)
- A.V. Andreev, Yu.V. Ponomarev, I.R. Prudnikov, N.N. Salashchenko. Pis'ma Zh. Eksp. Teor. Fiz., 66 (4), 219 (1997). DOI: 10.1134/1.567460
- V.K. Egorov, E.V. Egorov. Thin Solid Films, 398, 405 (2001). DOI: 10.1016/S0040-6090(01)01386-4
- Q. Zhong, L. Melchior, J. Peng, Q. Huang, Z. Wang, T. Salditt. J. Appl. Cryst., 50 (3), 701 (2017). DOI: 10.1107/S1600576717004630
- M. Vassholz, T. Salditt. Sci. Adv., 7 (4), eabd5677 (2021). DOI: 10.1126/sciadv.abd5677
- I.R. Prudnikov. J. Appl. Crystallogr., 38 (4), 595 (2005). DOI: 10.1107/S0021889805011830
- V.A. Bushuev, O.D. Roshchupkina. Bull. Russ. Acad. Sci. Phys., 72 (2), 192 (2008). DOI: 10.1007/s11954-008-2014-3
- I.R. Prudnikov. Phys. Rev. B, 66 (19), 193309 (2002). DOI: 10.1103/PhysRevB.66.193309
- A.V. Andreev. UFN, 145 (1), 113 (1985). [Sov. Phys. Usp., (in Russian) 28 (1), 70 (1985). DOI: 10.1070/PU1985v028n01ABEH003650]
- T. Jach, D.B. Novotny, M.J. Bedzyk, Q. Shen. Phys. Rev. B, 40 (8), 5557 (1989). DOI: 10.1103/PhysRevB.40.5557
- I.R. Prudnikov. J. Appl. Crystallogr., 39 (2), 259 (2006). DOI: 10.1107/S0021889806003232
- A.V. Vinogradov, I.V. Kozhevnikov. JETP Lett., 40 (10), 1221(1984)
- I.R. Prudnikov. Acta Crystallogr., Sect. A, 74(5), 608 (2018). DOI: 10.1107/S2053273318009877
- I.R. Prudnikov. J. Struct. Chem. 62 (4), 622 (2021). DOI: 10.1134/S0022476621040144
- X.-C. Huang, X.-J. Kong, T.-J. Li, Z.-R. Ma, H.-C. Wang, G.-C. Liu, Z.-S. Wang, W.-B. Li, L.-F. Zhu. Phys. Rev. Res., 3 (3), 033063 (2021). DOI: 10.1103/PhysRevResearch.3.033063
- R. Rohlsberger, J. Evers. In: Modern Mossbauer Spectroscopy, ed. by Y. Yoshida, G. Langouche. Topics in Applied Physics (Springer, Singapore, 2021), vol. 137, p. 105--171. DOI: 10.1007/978-981-15-9422-9_3
- L. Wolff, J. Evers. Phys. Rev. Res., 5 (1), 013071 (2023). DOI: 10.1103/PhysRevResearch.5.013071
- Kiranjot, R. Dhawan, M.H. Modi. Surf Interface Anal., 54 (1), 52 (2022). DOI: 10.1002/sia.7016
- Z.G. Pinsker. Rentgenovskaya kristallooptika, 2-e izd., pererab. i dop. (Nauka, M. (1982) (in Russian)
- A.V. Vinogradov, I.A. Brytov, A.Ya. Grudsky, M.T. Kogan, I.V. Kozhevnikov, V.A. Slemzin. Zerkalnaya rentgenovskaya optika, pod. red. A.V. Vinogradova (Mashinostroenie. Leningr. otd-nie, L., 1989). (in Russian)
- L.G. Parratt. Phys. Rev., 95 (2), 359 (1954). DOI: 10.1103/PhysRev.95.359
- A.V. Andreev. Phys. Lett. A, 219 (5-6), 349 (1996). DOI: 10.1016/0375-9601(96)00469-0
- I.D. Feranchuk, S.I. Feranchuk, A.P. Ulyanenkov. Phys. Rev. B, 75 (8), 085414 (2007). DOI: 10.1103/PhysRevB.75.085414
- O.S. Hetland, A.A. Maradudin, T. Nordam, P.A. Letnes, I. Simonsen. Phys. Rev. A, 95 (4), 043808 (2017). DOI: 10.1103/PhysRevA.95.043808
- M.A. Andreeva, V.A. Bushuev, E.N. Ovchinnikova, A.P. Oreshko, I.R. Prudnikov, A.G. Smekhova. Chislennye eksperimenty v zadachakh rentgenovskoy optiki, pod red. A.S. Ilyushina, (MGU im. M.V. Lomonosova, Fizicheskiy fakultet, M., 2005), 149 s. (in Russian)
- L. Nevot, P. Croce. Rev. Phys. Appl., 15 (3), 761 (1980). DOI: 10.1051/rphysap:01980001503076100
- B. Vidal, P. Vincent. Appl. Opt., 23 (11), 1794 (1984). DOI: 10.1364/AO.23.001794
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.