Transformation of the valence Si-O vibrations of smectite under effect of adsorbed CaSO4 and H2O molecules
Morozov A. V. 1, Kochur A. G. 1, Shapovalov V. L. 1, Okost M. V. 1, Yavna V. A. 1
1Rostov State University for Railway Transportation, Rostov-on-Don, Russia
Email: cpd@rgups.ru, agk2007@bk.ru

PDF
This work deals with experimental and theoretical investigation of the spectral properties of smectite, and its mixture with alabaster (building gypsum) at low moistures. The position and intensity of infrared spectrum bands at wave numbers in the range of 800-1250 cm-1 coming from Si-O vibrations are investigated. In order to interpret the experimental spectra obtained by frustrated total internal reflection method, theoretical models based on DFT with XLYP-correlation potential are used, with cluster approximation for the smectite surface. This allowed determining optimal positions of the atoms of CaSO4 and H2O molecules near the basal surface. Positions and intensities of components of the IR spectra of clusters are calculated. The profile of water valence bands was calculated as superposition of Gaussian curves with the widths estimated from the experiment. Theoretical studies explained the observed transformations of spectral bands (variation of positions and intensities) resulting from the modification of the surface properties of smectite particles, and from changes in samples moisture. The agreement achieved in the positions and profiles of experimental and theoretical spectral bands justifies the adequacy of the theoretical description of modification of smectite properties, and the effect of hydration Keywords: Infrared spectrum, DFT method, basal surface modification, cluster method, electron and spatial structure.
  1. H. Tahershamsi, R. Ahmadi-Naghadeh, B. Zuada-Coelho, J. Dijkstra. Transportation Geotechnics, 42, 101011 (2023). DOI: 10.1016/j.trgeo.2023.101011
  2. T. Zhang, T. Li, S. Feng. Soil Dynamics and Earthquake Engineering, 166, 107727 (2023). DOI: 10.1016/j.soildyn.2022.107727
  3. H. Lei, M. Liu. Soil Dynamics and Earthquake Engineering, 153, 107086 (2022). DOI: 10.1016/j.soildyn.2021.107086
  4. Y. Zheng, H. Sun, M. Hou, X. Ge. Engineering Geology, 293, 106284 (2021). DOI: 10.1016/j.enggeo.2021.106284
  5. V.I. Osipov. Priroda prochnostnykh i deformatsionnykh svoystv glinistykh porod (Izd-vo MGU, M., 1979). (in Russian) https://search.rsl.ru/ru/record/01007707371
  6. S. Li, D. Wang, C. Tang, Y. Chen. Construction and Building Materials, 374, 130902 (2023). DOI: 10.1016/j.conbuildmat.2023.130902
  7. A.L. Rami rez, L. Korkiala-Tanttu. Transportation Geotechnics, 38, 100920 (2023). DOI: 10.1016/j.trgeo.2022.100920
  8. A.M. Omar, S.S. Agaiby, M.A. EL-Khouly. Ain Shams Engineering Journal, 15 (3), 102500 (2023). DOI: 10.1016/j.asej.2023.102500
  9. V.V. Sirotyuk, E.N. Alkaev, A.A. Lunev. Sb. materialov IV Mezhdunarodnoy nauchno-prakticheskoy konferentsii: Arkhitekturno-stroitelny i dorozhno-transportny kompleksy: problemy, perspektivy, innovatsii (Sibirsky gosudarstvenny avtomobilno-dorozhny universitet (SibADI), Omsk, 2019), s. 329-334. (in Russian) https://www.elibrary.ru/download/ elibrary_42386891_78408791.pdf
  10. D.T. Bergado, S. Chaiyaput, S.Artidteang, T. Nghia-Nguyen. Geotextiles and Geomembranes, 48 (6), 828-843 (2020). DOI: 10.1016/j.geotexmem.2020.07.003
  11. Q. Ma, Z. Cao, Y. Pu. Advances in Materials Science and Engineering, 2018, 9125127 (2018). DOI: 10.1155/2018/9125127
  12. Z. Cao, Q. Ma, H. Wang. Advances in Civil Engineering, 2019, 8214534 (2019). DOI: 10.1155/2019/8214534
  13. S. Kaufhold, M. Hein, R. Dohrmann, K. Ufer. Vibrational Spectroscopy, 59, 29-39 (2012). DOI: 10.1016/j.vibspec.2011.12.012
  14. A. Morozov, A. Vasilchenko, A. Kasprzhitskii, G. Lazorenko, V. Yavna, A. Kochur. Vibrational Spectroscopy, 114, 03258 (2021). DOI: 10.1016/j.vibspec.2021.103258
  15. B.K. Waruru, K.D. Shepherd, G.M. Ndegwa, P.T. Kamoni, A.M. Sila. Biosystems Engineering, 121, 177-185 (2014). DOI: 10.1016/j.biosystemseng.2014.03.003
  16. M. Knadel, H. Ur Rehman, N. Pouladi, L. Wollesen de Jonge, P. Moldrup, E. Arthur. Geoderma, 402, 115300 (2021). DOI: 10.1016/j.geoderma.2021.115300
  17. M. Davari, S.A. Karimi, H.A. Bahrami, S.M. Taher Hossaini, S. Fahmideh. CATENA, 197, 104987 (2021). DOI: 10.1016/j.catena.2020.104987
  18. T.F. Nazdracheva, A.V. Kukharskii, A.S. Kasprzhitskii, G.I. Lazorenko, V.A. Yavna, A.G. Kochur. Opt. Spectrosc., 129, 270-275 (2021). DOI: 10.1134/S0030400X21020107
  19. A.A. Vasilchenko, I.A. Kondrashov, D.V. Olkhovatov. Sb. nauchnykh trudov: Mezhdunarodnoy nauchno-prakticheskoy konferentsii: Aktualnye problemy i perspektivy razvitiya transporta, promyshlennosti i ekonomiki Rossii (Rostovsky gosudarstvenny universitet putey soobscheniya, Rostov-na-Donu, 45-48 (2020). (in Russian)
  20. M. Ritz, L. Vaculikova, E. Plevova. Acta Geodynamica et Geomaterialia, 8, 1 (161), 47-58 (2011). https://www.irsm.cas.cz/materialy/acta_content/ 2011_01/4_Ritz.pdf
  21. R.A. Schoonheydt, C.T. Johnston. Developments in Clay Science, 1, 87-113 (2006). DOI: 10.1016/S1572-4352(05)01003-2
  22. C. Peng, F. Min, L. Liu, J. Chen. Applied Surface Science, 387, 308-316 (2016). DOI: 10.1016/j.apsusc.2016.06.079
  23. A.-A. Abd-Elshafi, A.A. Amer, A. El-Shater, E.F. Newair, M. El-rouby. J. Molecular Liquids, 383, 122092 (2023). DOI: 10.1016/j.molliq.2023.122092
  24. V. Yavna, T. Nazdracheva, A. Morozov, Y. Ermolov, A. Kochur. Crystals, 11 (9), 1146 (2021). DOI: 10.3390/cryst11091146
  25. X. Hu, A. Michaelides. Surface Science, 602 (4), 960-974 (2008). DOI: 10.1016/j.susc.2007.12.032
  26. R. Solc, M.H. Gerzabek, H. Lischka, D. Tunega. Geoderma, 169, 47-54 (2011). DOI: 10.1016/j.geoderma.2011.02.004
  27. R.K. Takoo, B.R. Patel. Crystal Research and Technology, 21 (1), 141-144 (1986). DOI: 10.1002/crat.2170210134
  28. R.R. Pawar, Lalhmunsiama, H.C. Bajaj, S.-M. Lee. J. Industrial and Engineering Chemistry, 34, 213-223 (2016). https://doi.org/10.1016/j.jiec.2015.11.014
  29. A.S. Semenkova, M.V. Evsiunina, P.K. Verma, P.K. Mohapatra, V.G. Petrov, I.F. Seregina, M.A. Bolshov, V.V. Krupskaya, A.Yu. Romanchuk, S.N. Kalmykov. Applied Clay Science, 166, 88-93 (2018). DOI: 10.1016/j.clay.2018.09.010
  30. A. Morozov, A. Vasilchenko, V. Shapovalov, A. Kochur, V. Yavna. Transportation Research Procedia, 68, 947-954 (2023). DOI: 10.1016/j.trpro.2023.02.132
  31. S. Olsson, O. Karnland. Characterisation of bentonites from Kutch, India and Milos, Greece --- some candidate tunnel back-fill materials? (SKB Rapport R-09-53, 2009). https://inis.iaea.org/collection/NCLCollectionStore/_ Public/41/038/41038317.pdf
  32. S. Pu, Z. Zhu, W. Huo. Conservation and Recycling, 174, 105780 (2021). DOI: 10.1016/j.resconrec.2021.105780
  33. D. Toksoz Hozatli oglu, I. Yi lmaz. Engineering Geology, 280, 105931 (2021). DOI: 10.1016/j.enggeo.2020.105931
  34. Ahmed Usama H. Issa. Soils and Foundations, 54 (3), 405-416 (2014). DOI: 10.1016/j.sandf.2014.04.009
  35. A.V. Morozov, D.V. Olkhovatov, V.L. Shapovalov, A.G. Kochur, V.A. Yavna. Izv. Sarat. Univ. Novaya Seriya. (in Russian). Seriya: Fizika, 23 (3), 221-237 (2023). (in Russian) DOI: 10.18500/1817-3020-2023-23-3-221-237
  36. A. Morozov, V. Shapovalov, Y. Popov, A. Kochur, V. Yavna. Vibrational Spectroscopy, 128, 103582 (2023). DOI: 10.1016/j.vibspec.2023.103582
  37. GOST 5180-2015. Grunty. Metody laboratornogo opredeleniya fizicheskikh kharakteristik (Standartinform, M., 2016). (in Russian)
  38. E.K.U. Gross, R.M. Dreizler. Density Functional Theory: An Approach to the Quantum Many-Body Problem (Springer US, 2013). DOI: 10.1007/978-1-4757-9975-0
  39. N. Bork, L. Du, H. Reiman, T. Kurten, H.G. Kjaergaard. J. Physical Chemistry A, 118 (28), 5316-5322 (2014). DOI: 10.1021/jp5037537
  40. A.G. Shklovsky, A.V. Beregovoy. Teoriya funktsionala elektronnoy plotnosti dlya atomov i prostykh molekul (ID "Belgorod" NIU "BelGU", Belgorod, 2014). (in Russian)
  41. E. Magnusson. J. Computational Chemistry, 14 (1), 54-66 (1993). DOI: 10.1002/jcc.540140110
  42. A.A. Granovsky. Firefly. version 8 [Electronic source]. http://classic.chem.msu.su/gran/firefly/index.html
  43. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. J. Computational Chemistry, 14 (11), 1347-1363 (1993). DOI: 10.1002/jcc.540141112
  44. Morozov, T. Nazdracheva, A. Kochur, V. Yavna. Spectrochimica Acta Part A, 287 (2), 122119 (2023). DOI: 10.1016/j.saa.2022.122119
  45. B.M. Bode, M.S. Gordon. J. Molecular Graphics and Modelling, 16 (3), 133-138 (1998). DOI: 10.1016/S1093-3263(99)00002-9
  46. J. Madejova, J. Keckes, H. Palkova, P. Komadel. Clay Minerals, 37 (2), 377-388 (2002). DOI: 10.1180/0009855023720042
  47. S.Yu. Khashirova, Z.L. Beslaneeva, I.V. Musov, Yu.I. Musaev, A.K. Mikitaev. Fundamentalnye issledovaniya, 8 (1), 202-206 (2011). (in Russian) https://fundamental-research.ru/ru/article/view?id=26814
  48. B. Tyagi, Ch.D. Chudasama, R.V. Jasra. Spectrochimica Acta Part A, 64 (2), 273-278 (2006). DOI: 10.1016/j.saa.2005.07.018
  49. A.G. Chetverikova, V.N. Makarov, O.N. Kanygina, M.M. Seregin, V.L. Berdinsky, A.V. Kanaki, E.S. Deeva, A.A. Smorokov, M.S. Syrtanov, E.B. Gello. ZhTF, 94 (1), 99-108 (2024). (in Russian) DOI: 10.61011/JTF.2024.01.56907.167-23
  50. J.D. Russell, V.C. Farmer, B. Velde. Mineralogical Magazine, 37 (292), 869-879 (1970). DOI: 10.1180/minmag.1970.037.292.01
  51. G.E. Christidis, P.W. Scott, A.C. Dunham. Applied Clay Science, 12 (4), 329-347 (1997). DOI: 10.1016/S0169-1317(97)00017-3
  52. J.D. Russell, A.R. Fraser. Infrared methods. In: Wilson M.J. (eds) Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Springer, Dordrecht, 1994). DOI: 10.1007/978-94-011-0727-3_2
  53. K. Bukka, J.D. Miller, J. Shabtai. Clays Clay Miner., 40, 92-102 (1992). DOI: 10.1346/CCMN.1992.0400110
  54. J. Madejova, P. Komadel, Clays Clay. Miner., 49, 410-432 (2001). DOI: 10.1346/CCMN.2001.0490508
  55. G. Jovanovski, P. Makreski. Macedonian J. Chemistry and Chemical Engineering, 35 (2), 125-155 (2016). DOI: 10.20450/mjcce.2016.1047
  56. V.C. Farmer, J.D. Russell. Spectrochimica Acta Part A, 20 (7), 1149-1173 (1964). DOI: 10.1016/0371-1951(64)80165-X
  57. 10. L. Yang. Planetary and Space Science, 163, 35-41 (2018). DOI: 10.1016/j.pss.2018.04.010
  58. M. Hass, G.B.B.M. Sutherland. Proc. Roy. Soc. Lond., 236, 427-445 (1956). DOI: 10.1098/rspa.1956.0146
  59. E. Melliti, K. Touati, B. van der Bruggen, H. Elfil. Chemosphere, 263, 127866 (2021). DOI: 10.1016/j.chemosphere.2020.127866
  60. Janice L. Bishop, Melissa D. Lane, M. Darby Dyar, Sara J. King, Adrian J. Brown, Gregg A. Swayze. American Mineralogist, 99 (10), 2105-2115 (2014). DOI: 10.2138/am-2014-4756
  61. A.V. Naumov, A. V. Sergeeva. Sb. trudov pyatoy nauchno-tekhnicheskoy konferentsii: K 100-letiyu organizatsii instrumentalnykh seismologicheskikh nablyudeniy na Kamchatke "Problemy kompleksnogo geofizicheskogo monitoringa Dalnego Vostoka Rossii" (Federalny issledovatelsky tsentr "Edinaya geofizicheskaya sluzhba Rossiyskoy akademii nauk", Obninsk, 2015) s. 86-90. (in Russian) https://elibrary.ru/item.asp?id=25678520
  62. K. Nakamoto. IK spectry i spektry KR neorganicheskikh i koordinatsionnykh soedinenii (Mir, M., 1991). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru