Рентгеновская дифракция в тонком кристалле с неоднородным изгибом отражающих атомных плоскостей
Пунегов В.И.1
1Физико-математический институт ФИЦ "Коми научный центр УрО РАН", Сыктывкар, Россия
Email: vpunegov@dm.komisc.ru
Поступила в редакцию: 2 апреля 2024 г.
В окончательной редакции: 2 апреля 2024 г.
Принята к печати: 2 апреля 2024 г.
Выставление онлайн: 1 июля 2024 г.
Теоретически рассмотрена кинематическая рентгеновская дифракция в тонком изогнутом кристалле с изменяющимся по его глубине радиусом изгиба. Разработан алгоритм расчетов интенсивности рассеяния вблизи узла обратной решетки от такой структуры на основе рекуррентных соотношений. Выполнено численное моделирование рентгеновской дифракции в кристалле кремния в рамках четырех моделей микроструктур. Показано, что карты распределения дифракционной интенсивности в обратном пространстве существенно зависят от закона изменения радиуса изгиба в кристалле. Ключевые слова: кинематическая рентгеновская дифракция, карты распределения дифракционной интенсивности в обратном пространстве, моделирование дифракции в изогнутом кристалле.
- Y.I. Nesterets, S.W. Wilkins. J. Appl. Cryst., 41, 237 (2008). DOI: 10.1107/S0021889808000617
- D. Zhu, M. Cammarata, J.M. Feldkamp, D.M. Fritz, J.B. Hastings, S. Lee, H.T. Lemke, A. Robert, J.L. Turner, Y. Feng. Appl. Phys. Lett., 101, 034103 (2012). http://dx.doi.org/10.1063/1.4736725
- L. Bandiera, A. Sytov, D. De Salvador, A. Mazzolari, E. Bagli, R. Camattari, S. Carturan, C. Durighello, G. Germogli, V. Guidi, P. Klag, W. Lauth, G. Maggioni, V. Mascagna, M. Prest, M. Romagnoni, M. Soldani, V.V. Tikhomirov, E. Vallazza. Eur. Phys. J. C, 81, 284 (1-9) (2021). DOI: 10.1140/epjc/s10052-021-09071-2
- R. Camattari, M. Romagnoni, L. Bandiera, E. Bagli, A. Mazzolari, A. Sytov, S. Haaga, M. Kabukcuoglu, S. Bode, D. Hanschke, A. Danilewsky, T. Baumbach, V. Bellucci, V. Guidia, G. Cavoto. J. Appl. Crystallogr., 53, 486 (2020). DOI: 10.1107/S1600576720002800
- A. Neels, A. Dommann. Techn. Proc. NSTI-Nanotech, 2, 182 (2010)
- A.-P. Honkanen, C. Ferrero, J.-P. Guigay, V. Mocella, J. Appl. Cryst., 51, 514 (2018). https://doi.org/10.1107/S1600576718001930
- V.I. Punegov, K.M. Pavlov, A.V. Karpov, N.N. Faleev. J. Appl. Cryst., 50, 1256 (2017). DOI: 10.1107/S1600576717010123
- V.I. Punegov, S.I. Kolosov, K.M. Pavlov. J. Appl. Cryst., 49, 1190 (2016). DOI: 10.1107/S1600576716008396
- A. Neels, G. Bourban, H. Shea, A. Schifferle, E. Mazza, A. Dommann. Proced. Chem., 1, 820 (2009). DOI: 10.1016/j.proche.2009.07.204
- В.И Пунегов. УФН, 185, 449 (2015). [V.I. Punegov. Physics-Uspekhi, 58, 419 (2015). DOI: 10.3367/UFNr.0185.201505a.0449]
- S. Takagi. Acta Cryst., 15, 1311 (1962)
- D. Taupin. Bull. Soc. Fr. Miner. Crist., 87, 469 (1964)
- T. Fukamachi, S. Jongsukswat, D. Ju, R. Negishi, K. Hirano, T. Kawamura. Acta Cryst. A, 75, 842 (2019). DOI: 10.1107/S2053273319011859
- V.I. Punegov, S.I. Kolosov. J. Appl. Cryst., 55, 320 (2022). DOI: 10.1107/S1600576722001686
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.