Minaev N.V.
1, Zhigarkov V.S.1, Cheptsov V.S.1,2, Yusupov V.I.1
1Institute Photon Technologies Kurchatov Complex of Crystallography and Photonics NRC "Kurchatov Institute"
2Department of Soil Science, Lomonosov Moscow State University
Email: minaevn@gmail.com, vzhigarkov@gmail.com, cheptcov.vladimir@gmail.com, iouss@yandex.ru
One of the new areas of laser bioprinting is laser engineering of microbial systems (LEMS). This technology involves controlled transfer of gel microdroplets containing microorganisms from a donor substrate to acceptor media using a nanosecond laser pulse. During such transfer, living systems are affected by various physical factors: radiation, shock waves, temperature surges. The work carried out a study of the effect on Escherichia coli cells of nanoparticles that are formed during the destruction of a thin gold absorbent coating of the donor plate. It has been shown that the sizes of these nanoparticles, their concentration in the colloid, and the zeta-potential depend significantly on the laser pulse energy. It has been established that Au nanoparticles have a certain effect on the kinetics of microbial growth. A systematization of the main physical factors influencing microorganisms during their laser-induced spatial transfer has been carried out, and the most important scientific results from a practical point of view obtained using promising LEMS technology have been analyzed. Keywords: laser bioprinting, laser engineering of microbial systems, LEMS, direct laser-induced transfer, microbiology, impact factors.
- W.H. Lewis, G. Tahon, P. Geesink, D.Z. Sousa, T.J.G. Ettema. Nat. Rev. Microbiol., 19 (4), 225 (2021). DOI: 10.1038/s41579-020-00458-8
- J. Clardy, M.A. Fischbach, C.T. Walsh. Nat. Biotechnol., 24 (12), 1541 (2006). DOI: 10.1038/nbt1266
- J.V. Pham, M.A. Yilma, A. Feliz, M.T. Majid, N. Maffetone, J.R. Walker, E. Kim, H.J. Cho, J.M. Reynolds, M.C. Song, et al. Front. Microbiol., 19 (4), 10 (2019). DOI: 10.3389/fmicb.2019.01404
- A. Dance. Nature, 582, 301 (2020). DOI: 10.1038/d41586-020-01684-z
- V.I. Yusupov, M.V. Gorlenko, V.S. Cheptsov, N.V. Minaev, E.S. Churbanova, V.S. Zhigarkov, E.A. Chutko, S.A. Evlashin, B.N. Chichkov, V.N. Bagratashvili. Laser Phys. Lett., 15 (6), 065604 (2018). DOI: 10.1088/1612-202X/aab5ef
- P. Liang, B. Liu, Y. Wang, K. Liu, Y. Zhao, W.E. Huang, B. Li. Appl. Environ. Microbiol., 88 (3), e01165-21 (2022). DOI: 10.1128/aem.01165-21
- Y. Deng, P. Renaud, Z. Guo, Z. Huang, Y. Chen. J. Biol. Eng., 11 (1), 2 (2017). DOI: 10.1186/s13036-016-0045-0
- V.S. Cheptsov, S.I. Tsypina, N.V. Minaev, V.I. Yusupov, B. Chichkov. Int. J. Bioprinting, |bf 5 (1), 1 (2018). DOI: 10.18063/ijb.v5i1.165
- N.V. Minaev, V.I. Yusupov, B.N. Chichkov. Patent RF, RU198221U1 (2020). (in Russian)
- J. Feichtmayer, L. Deng, C. Griebler. Front. Microbiol., 8 (2017). DOI: 10.3389/fmicb.2017.02192
- N.R. Schiele, D.T. Corr, Y. Huang, N.A. Raof, Y. Xie, D.B. Chrisey. Biofabrication, 2 (3), 032001 (2010). DOI: 10.1088/1758-5082/2/3/032001
- H.Q. Xu, J.C. Liu, Z.Y. Zhang, C.X. Xu. Mil. Med. Res., 9 (1), 1 (2022). DOI: 10.1186/s40779-022-00429-5
- Z.P. Kacarevic, P.M. Rider, S. Alkildani, S. Retnasingh, R. Smeets, O. Jung, Z. Ivanisevic, M. Barbeck. Materials (Basel), 11 (11),(2018). DOI: 10.3390/ma11112199
- J. Adhikari, A. Roy, A. Das, M. Ghosh, S. Thomas, A. Sinha, J. Kim, P. Saha. Macromol. Biosci., 21 (1), (2021). DOI: 10.1002/mabi.202000179
- B. Hopp, T. Smausz, N. Barna, C. Vass, Z. Antal, L. Kredics, D. Chrisey. J. Phys. D. Appl. Phys., 38 (6), 833 (2005). DOI: 10.1088/0022-3727/38/6/007
- H. Assad, A. Assad, A. Kumar. Pharmaceutics, 15 (1), 255 (2023). DOI: 10.3390/pharmaceutics15010255
- Y.N. Slavin, H. Bach. Nanomaterials, 12 (24), 4470 (2022). DOI: 10.3390/nano12244470
- R. Gaebel, N. Ma, J. Liu, J. Guan, L. Koch, C. Klopsch, M. Gruene, A. Toelk, W. Wang, P. Mark, et al. Biomaterials, 32 (35), 9218 (2011). DOI: 10.1016/j.biomaterials.2011.08.071
- E. Pages, M. Remy, V. Keriquel, M.M. Correa, B. Guillotin, F. Guillemot. J. Nanotechnol. Eng. Med., 6 (2), 021005 (2015). DOI: 10.1115/1.4031217
- J.H. Niazi, M.B. Gu. Toxicity of Metallic Nanoparticles in Microorganisms- a Review. In Atmospheric and Biological Environmental Monitoring (Springer Netherlands, Dordrecht, 2009), pp. 193-206. DOI: 10.1007/978-1-4020-9674-7_12
- I.A. Mamonova, I.V. Babushkina, I.A. Norkin, E.V. Gladkova, M.D. Matasov, D.M. Puchin'yan. Nanotechnologies Russ., 10 (1-2), 128 (2015). DOI: 10.1134/S1995078015010139
- M.R. Khan, K.M. Fromm, T.F. Rizvi, B. Giese, F. Ahamad, R.J. Turner, M. Fueg, E. Marsili. Part. Part. Syst. Charact., 37 (5), 1 (2020). DOI: 10.1002/ppsc.201900419
- V.S. Zhigarkov, E.V. Ivanovskaya, K.O. Aiyyzy, A.V. Ovcharov. JTPhLet, 49 (22), 31 (2023). DOI: 10.61011/PJTF.2023.22.56597.19649
- M. Blazanin. Gcplyr: An R Package for Microbial Growth Curve Data Analysis. bioRxiv 2023.04.30.538883, (2023). DOI: 10.1101/2023.04.30.53888
- M. Peleg, M.G. Corradini. Crit. Rev. Food Sci. Nutr., 51 (10), 917 (2011). DOI: 10.1080/10408398.2011.570463
- K. Sprouffske, A. Wagner. BMC Bioinformatics, 17 (1), 17 (2016). DOI: 10.1186/s12859-016-1016-7
- A. Agha, W. Waheed, I. Stiharu, V. Nerguizian, G. Destgeer, E. Abu-Nada, A. Alazzam. A Review on Microfluidic-Assisted Nanoparticle Synthesis, and Their Applications Using Multiscale Simulation Methods (Springer US, 2023), vol. 18. DOI: 10.1186/s11671-023-03792-x
- L. Koch, O. Brandt, A. Deiwick, B. Chichkov. Int. J. Bioprinting, 3 (1), 1 (2017). DOI: 10.18063/IJB.2017.01.001
- L. Koch, A. Deiwick, B. Chichkov. 3D Printing and Biofabrication, 303 (2018)
- S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amede, F. Guillemot. Biofabrication, 3 (2), 025001 (2011). DOI: 10.1088/1758-5082/3/2/025001
- Y. Zhang, T.P. Shareena Dasari, H. Deng, H. Yu. J. Environ. Sci. Heal. Part C: Environ. Carcinog. Ecotoxicol. Rev., 33 (3), 286 (2015). DOI: 10.1080/10590501.2015.1055161
- K. Chandran, S. Song, S. Il Yun. Arab. J. Chem., 12 (8), 1994 (2019). DOI: 10.1016/j.arabjc.2014.11.041
- D. Pissuwan, C.H. Cortie, S.M. Valenzuela, M.B. Cortie. Trends Biotechnol., 28 (4), 207 (2010). DOI: 10.1016/j.tibtech.2009.12.004
- Y. Roiter, M. Ornatska, A.R. Rammohan, J. Balakrishnan, D.R. Heine, S. Minko. Nano Lett., 8 (3), 941 (2008). DOI: 10.1021/nl080080l
- A. Simon-Deckers, S. Loo, M. Mayne-L'Hermite, N. Herlin-Boime, N. Menguy, C. Reynaud, B. Gouget, M. Carriere. Environ. Sci. Technol., 43 (21), 8423 (2009). DOI: 10.1021/es9016975
- Y.N. Slavin, J. Asnis, U.O. Hfeli, H. Bach. J. Nanobiotechnology, 15 (1), 1 (2017). DOI: 10.1186/s12951-017-0308-z
- O.A. Lazar, A.S. Nikolov, C.C. Moise, S. Rosoiu, M. Prodana, M. Enachescu. Appl. Surf. Sci., 609, 155289 (2023). DOI: 10.1016/j.apsusc.2022.155289
- S. Dittrich, S. Barcikowski, B. Gokce. Opto-Electronic Adv. 4 (1), 200072 (2021). DOI: 10.29026/oea.2021.200072
- M.V. Gorlenko, E.A. Chutko, E.S. Churbanova, N.V. Minaev, K.I. Kachesov, L.V. Lysak, S.A. Evlashin, V.S. Cheptsov, A.O. Rybaltovskiy, V.I. Yusupov, et al. J. Biol. Eng., 12 (1), 27 (2018). DOI: 10.1186/s13036-018-0117-4
- V.S. Cheptsov, E.S. Churbanova, V.I. Yusupov, M.V. Gorlenko, L.V. Lysak, N.V. Minaev, V.N. Bagratashvili, B.N. Chichkov. Lett. Appl. Microbiol., 67 (6), 544 (2018). DOI: 10.1111/lam.13074
- V. Yusupov, S. Churbanov, E. Churbanova, K. Bardakova, A. Antoshin, S. Evlashin, P. Timashev, N. Minaev. Int. J. Bioprinting 6 (3), 1 (2020). DOI: 10.18063/ijb.v6i3.271
- E. Mareev, N. Minaev, V. Zhigarkov, V. Yusupov. Photonics, 8 (9), 374 (2021). DOI: 10.3390/photonics8090374
- E.V. Grosfeld, V.S. Zhigarkov, A.I. Alexandrov, N.V. Minaev, V.I. Yusupov. Int. J. Mol. Sci., 23 (17),(2022). DOI: 10.3390/ijms23179823
- V. Zhigarkov, I. Volchkov, V. Yusupov, B. Chichkov. Nanomaterials, 11 (10), 2584 (2021). DOI: 10.3390/nano11102584
- T.V. Kochetkova, K.S. Zayulina, V.S. Zhigarkov, N.V. Minaev, B.N. Chichkov, A.A. Novikov, S.V. Toshchakov, A.G. Elcheninov, I.V. Kublanov. Int. J. Syst. Evol. Microbiol., 70 (2), 1192 (2020). DOI: 10.1099/ijsem.0.003902
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.