Formation of plasma periodic structures in the volume of fused silica exposed by focused laser radiation with a wavelength of 1030 nm
Bogatskaya A.V.
1,2, Popov A.M.
1,2
1Lomonosov Moscow State University, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: annabogatskaya@gmail.com, alexander.m.popov@gmail.com
Femtosecond laser writing of birefringent subwavelength nanostructures in dielectrics has been studied for almost two decades since it is of interest for a number of practical applications such as optical memory, optical waveguides, microfluidic channels, etc. In this work, a numerical modeling of the formation of plasma periodic nanostructures in fused silica in the direction of propagation of a focused laser beam is carried out. It is shown that the focused beam creates a plasma layer with a supercritical concentration of electrons which provides an effective reflection of the incident laser pulse, leading to the formation of a standing wave of ionization. Effective ionization occurs in the bungles of wave, that forms a plasma lattice with a period equal to the period of the standing wave in the medium. Modeling allows us to determine the conditions under which the proposed regime of nanostructuring is possible. Keywords: laser microstructuring in dielectrics, birefringent nanostructures, fused silica, electron-hole plasma, nano- and micromodifications, multiphoton ionization in strong fields.
- E. Mazur, R. Gattass. Nature Photon., 2, 219-225 (2008). DOI: 10.1038/nphoton.2008.47
- R.S. Taylor, C. Hnatovsky, E. Simova, R. Pattathil. Opt. Lett., 32 (19), 2888-2890 (2007). DOI: 10.1364/OL.32.002888
- N.M. Bulgakova, V.P. Zhukov, S.V. Sonina, Y.P. Meshcheryakov. J. Appl. Phys., 118 (23), 233108 (2015). DOI: 10.1063/1.4937896
- Y. Shimotsuma, K. Hirao, J.R. Qiu, P.G. Kazansky. Mod. Phys. Lett. B, 19, 225 (2005). DOI: 10.1142/S0217984905008281
- H.Y. Sun, J. Song, C.B. Li, J. Xu, X.S. Wang, Y. Cheng, Z.Z. Xu, J.R. Qiu, T. Jia. Appl. Phys. A, 88, 285 (2007). DOI: 10.1007/s00339-007-4012-y
- M. Beresna, M. Geceviv cius, N.M. Bulgakova, P.G. Kazansky. Opt. Express, 19, 18989 (2011). DOI: 10.1364/OE.19.018989
- Y. Dai, A. Patel, J. Song, M. Beresna, P.G. Kazansky. Opt. Express, 24, 19344 (2016). DOI: 10.1364/OE.24.019344
- C.B. Schaffer, A. Brodeur, J.F. Garci a, E. Mazur. Opt. Lett., 26, 93 (2001). DOI: 10.1364/OL.26.000093
- Z. Wang, K. Sugioka, Y. Hanada, K. Midorikawa. Appl. Phys. A, 88, 699 (2007). DOI: 10.1007/s00339-007-4030-9
- A. Mermillod-Blondin, I.M. Burakov, Y.P. Meshcheryakov, N.M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, R. Stoian. Phys. Rev. B, 77, 104205 (2008). DOI: 10.1103/PhysRevB.77.104205
- V. Koubassov, J. Laprise, F. Theberge et al. Appl. Phys. A, 79, 499-505 (2004). DOI: 10.1007/s00339-003-2474-0
- Y. Shimotsuma, P.G. Kazansky, J.R. Qiu, K. Hirao. Phys. Rev. Lett., 91, 247405 (2003). DOI: 10.1103/PhysRevLett.91.247405
- R. Desmarchelier, B. Poumellec, F. Brisset, S. Mazerat, M. Lancry. World J. Nano Sci. Eng., 5, 115-125 (2015). DOI: 10.4236/wjnse.2015.54014
- N.M. Bulgakova, V.P. Zhukov, Yu.P. Meshcheryakov. Appl. Phys. B, 113 (3), 437-449 (2013). DOI: 10.1007/s00340-013-5488-0
- V.R. Bhardwaj, E. Simova, P.P. Rajeev, C. Hnatovsky, R.S. Taylor, D.M. Rayner, P.B. Corkum. Phys. Rev. Lett., 96, 057404 (2006). DOI: 10.1103/PhysRevLett.96.057404
- R. Taylor, C. Hnatovsky, E. Simova. Laser Photonics Rev., 2, 26 (2008). DOI: 10.1002/lpor.200710031
- M. Beresna, M. Geceviv cius, P.G. Kazansky, T. Taylor, A. Kavokin. Appl. Phys. Lett., 101, 053120 (2012). DOI: 10.1063/1.4742899
- S.I. Kudryashov, P.A. Danilov, M.P. Smaev, A.E. Rupasov, A.A. Ionin, R.A. Zakoldaev. JETP Lett., 113, 493-497 (2021). DOI: 10.1134/S0021364021080075
- S.I. Kudryashov, P.A. Danilov, A.E. Rupasov, M.P. Smayev, A.N. Kirichenko, N.A. Smirnov, A.A. Ionin, A.S. Zolot'ko, R.A. Zakoldaev. Appl. Surf. Sci., 568, 150877 (2021). DOI: 10.1016/j.apsusc.2021.150877
- S. Kudryashov, A. Rupasov, R. Zakoldaev, M. Smaev, A. Kuchmizhak, A. Zolot'ko, M. Kosobokov, A. Akhmatkhanov, V. Shur. Nanomaterials, 12, 3613 (2022). DOI: 10.3390/nano12203613
- S. Kudryashov, A. Rupasov, M. Kosobokov, A. Akhmatkhanov, G. Krasin, P. Danilov, B. Lisjikh, A. Abramov, E. Greshnyakov, E. Kuzmin et al. Nanomaterials, 12, 4303 (2022). DOI: 10.3390/nano12234303
- D. Milam. Appl. Optics, 37 (3), 546-550 (1998). DOI: 10.1364/AO.37.000546
- S.A. Akhmanov. Sov. Phys. Usp., 29, 589 (1986). DOI: 10.1070/PU1986v029n07ABEH003456
- A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz. Phys. Rev. B, 71, 125435 (2005). DOI: 10.1103/PhysRevB.71.125435
- J. Hoyo, A. de la Cruz, E. Grace, A. Ferrer, J. Siegel, A. Pasquazi, G. Assanto. J. Solid. Sci. Rep., 5, 7650 (2015). DOI: 10.1038/srep07650
- V.E. Semenov, E.I. Rakova, M.Yu. Glyavin, G.S. Nusinovich. Phys. Plasmas, 23 (7), 073109 (2016). DOI: 10.1063/1.4958313
- V.B. Gildenburg, I.A. Pavlichenko. Nanomaterials, 10 (8), 1461 (2020). DOI: 10.3390/nano10081461
- A. Bogatskaya, Yu. Gulina, N. Smirnov, I. Gritsenko, S. Kudryashov, A. Popov. Photonics, 10, 515 (2023). DOI: 10.3390/photonics10050515
- P. Audebert, Ph. Daguzan, A. Dos Santos, J.C. Gauthier, J.P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, A. Antonetti. Phys. Rev. Lett., 73 (14), 1990 (1994). DOI: 10.1103/PhysRevLett.73.1990
- L.V. Keldysh. JETP, 20, 1307-1314 (1964)
- N.M. Bulgakova, V.P. Zhukov, S.V. Soninam, Yu.P. Meshcheryakov. J. Appl. Phys., 118, 233108 (2015). DOI: 10.1063/1.4937896
- Yu.S. Gulina, S.I. Kudryashov, N.A. Smirnov, E.V. Kuzmin. Opt. Spectrosc., 130 (4), 390 (2022). DOI: 10.21883/EOS.2022.04.53724.45-21
- G.K. Krasin, M.S. Kovalev, P.A. Danilov, N.G. Stsepuro, E.A. Oleynichuk, S.A. Bibicheva, V.P. Martovitskii, S.I. Kudryashov. JETP Lett., 114, 117-123 (2021). DOI: 10.1134/S0021364021150054
- G.K. Krasin, M.S. Kovalev, S.A. Kudryashov, P.A. Danilov, V.P. Martovitskii, I.V. Gritsenko, I.M. Podlesnykh, R.A. Khmelnitskii, E.V. Kuzmin, Yu.S. Gulina, A.O. Levchenko. Appl. Surf. Sci., 595, 153549 (2022). DOI: 10.1016/j.apsusc.2022.153549
- Y. Lu, Y. Li, X. Xie, Z. Tang, L. Li, J. Li, Y. Ding. Front. Chem., 10 (2022). DOI: 10.3389/fchem.2022.1082651
- B. Zhang, X. Liu, J. Qiu. J. Materiomics, 5 (1), 1-14 (2019). DOI: 10.1016/j.jmat.2019.01.002
- B. Zhang, Z. Wang, D. Tan et al. PhotoniX, 4, 24 (2023). DOI: 10.1186/s43074-023-00101-8
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.