Formation of plasma periodic structures in the volume of fused silica exposed by focused laser radiation with a wavelength of 1030 nm
Bogatskaya A.V. 1,2, Popov A.M. 1,2
1Lomonosov Moscow State University, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: annabogatskaya@gmail.com, alexander.m.popov@gmail.com

PDF
Femtosecond laser writing of birefringent subwavelength nanostructures in dielectrics has been studied for almost two decades since it is of interest for a number of practical applications such as optical memory, optical waveguides, microfluidic channels, etc. In this work, a numerical modeling of the formation of plasma periodic nanostructures in fused silica in the direction of propagation of a focused laser beam is carried out. It is shown that the focused beam creates a plasma layer with a supercritical concentration of electrons which provides an effective reflection of the incident laser pulse, leading to the formation of a standing wave of ionization. Effective ionization occurs in the bungles of wave, that forms a plasma lattice with a period equal to the period of the standing wave in the medium. Modeling allows us to determine the conditions under which the proposed regime of nanostructuring is possible. Keywords: laser microstructuring in dielectrics, birefringent nanostructures, fused silica, electron-hole plasma, nano- and micromodifications, multiphoton ionization in strong fields.
  1. E. Mazur, R. Gattass. Nature Photon., 2, 219-225 (2008). DOI: 10.1038/nphoton.2008.47
  2. R.S. Taylor, C. Hnatovsky, E. Simova, R. Pattathil. Opt. Lett., 32 (19), 2888-2890 (2007). DOI: 10.1364/OL.32.002888
  3. N.M. Bulgakova, V.P. Zhukov, S.V. Sonina, Y.P. Meshcheryakov. J. Appl. Phys., 118 (23), 233108 (2015). DOI: 10.1063/1.4937896
  4. Y. Shimotsuma, K. Hirao, J.R. Qiu, P.G. Kazansky. Mod. Phys. Lett. B, 19, 225 (2005). DOI: 10.1142/S0217984905008281
  5. H.Y. Sun, J. Song, C.B. Li, J. Xu, X.S. Wang, Y. Cheng, Z.Z. Xu, J.R. Qiu, T. Jia. Appl. Phys. A, 88, 285 (2007). DOI: 10.1007/s00339-007-4012-y
  6. M. Beresna, M. Geceviv cius, N.M. Bulgakova, P.G. Kazansky. Opt. Express, 19, 18989 (2011). DOI: 10.1364/OE.19.018989
  7. Y. Dai, A. Patel, J. Song, M. Beresna, P.G. Kazansky. Opt. Express, 24, 19344 (2016). DOI: 10.1364/OE.24.019344
  8. C.B. Schaffer, A. Brodeur, J.F. Garci a, E. Mazur. Opt. Lett., 26, 93 (2001). DOI: 10.1364/OL.26.000093
  9. Z. Wang, K. Sugioka, Y. Hanada, K. Midorikawa. Appl. Phys. A, 88, 699 (2007). DOI: 10.1007/s00339-007-4030-9
  10. A. Mermillod-Blondin, I.M. Burakov, Y.P. Meshcheryakov, N.M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, R. Stoian. Phys. Rev. B, 77, 104205 (2008). DOI: 10.1103/PhysRevB.77.104205
  11. V. Koubassov, J. Laprise, F. Theberge et al. Appl. Phys. A, 79, 499-505 (2004). DOI: 10.1007/s00339-003-2474-0
  12. Y. Shimotsuma, P.G. Kazansky, J.R. Qiu, K. Hirao. Phys. Rev. Lett., 91, 247405 (2003). DOI: 10.1103/PhysRevLett.91.247405
  13. R. Desmarchelier, B. Poumellec, F. Brisset, S. Mazerat, M. Lancry. World J. Nano Sci. Eng., 5, 115-125 (2015). DOI: 10.4236/wjnse.2015.54014
  14. N.M. Bulgakova, V.P. Zhukov, Yu.P. Meshcheryakov. Appl. Phys. B, 113 (3), 437-449 (2013). DOI: 10.1007/s00340-013-5488-0
  15. V.R. Bhardwaj, E. Simova, P.P. Rajeev, C. Hnatovsky, R.S. Taylor, D.M. Rayner, P.B. Corkum. Phys. Rev. Lett., 96, 057404 (2006). DOI: 10.1103/PhysRevLett.96.057404
  16. R. Taylor, C. Hnatovsky, E. Simova. Laser Photonics Rev., 2, 26 (2008). DOI: 10.1002/lpor.200710031
  17. M. Beresna, M. Geceviv cius, P.G. Kazansky, T. Taylor, A. Kavokin. Appl. Phys. Lett., 101, 053120 (2012). DOI: 10.1063/1.4742899
  18. S.I. Kudryashov, P.A. Danilov, M.P. Smaev, A.E. Rupasov, A.A. Ionin, R.A. Zakoldaev. JETP Lett., 113, 493-497 (2021). DOI: 10.1134/S0021364021080075
  19. S.I. Kudryashov, P.A. Danilov, A.E. Rupasov, M.P. Smayev, A.N. Kirichenko, N.A. Smirnov, A.A. Ionin, A.S. Zolot'ko, R.A. Zakoldaev. Appl. Surf. Sci., 568, 150877 (2021). DOI: 10.1016/j.apsusc.2021.150877
  20. S. Kudryashov, A. Rupasov, R. Zakoldaev, M. Smaev, A. Kuchmizhak, A. Zolot'ko, M. Kosobokov, A. Akhmatkhanov, V. Shur. Nanomaterials, 12, 3613 (2022). DOI: 10.3390/nano12203613
  21. S. Kudryashov, A. Rupasov, M. Kosobokov, A. Akhmatkhanov, G. Krasin, P. Danilov, B. Lisjikh, A. Abramov, E. Greshnyakov, E. Kuzmin et al. Nanomaterials, 12, 4303 (2022). DOI: 10.3390/nano12234303
  22. D. Milam. Appl. Optics, 37 (3), 546-550 (1998). DOI: 10.1364/AO.37.000546
  23. S.A. Akhmanov. Sov. Phys. Usp., 29, 589 (1986). DOI: 10.1070/PU1986v029n07ABEH003456
  24. A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz. Phys. Rev. B, 71, 125435 (2005). DOI: 10.1103/PhysRevB.71.125435
  25. J. Hoyo, A. de la Cruz, E. Grace, A. Ferrer, J. Siegel, A. Pasquazi, G. Assanto. J. Solid. Sci. Rep., 5, 7650 (2015). DOI: 10.1038/srep07650
  26. V.E. Semenov, E.I. Rakova, M.Yu. Glyavin, G.S. Nusinovich. Phys. Plasmas, 23 (7), 073109 (2016). DOI: 10.1063/1.4958313
  27. V.B. Gildenburg, I.A. Pavlichenko. Nanomaterials, 10 (8), 1461 (2020). DOI: 10.3390/nano10081461
  28. A. Bogatskaya, Yu. Gulina, N. Smirnov, I. Gritsenko, S. Kudryashov, A. Popov. Photonics, 10, 515 (2023). DOI: 10.3390/photonics10050515
  29. P. Audebert, Ph. Daguzan, A. Dos Santos, J.C. Gauthier, J.P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, A. Antonetti. Phys. Rev. Lett., 73 (14), 1990 (1994). DOI: 10.1103/PhysRevLett.73.1990
  30. L.V. Keldysh. JETP, 20, 1307-1314 (1964)
  31. N.M. Bulgakova, V.P. Zhukov, S.V. Soninam, Yu.P. Meshcheryakov. J. Appl. Phys., 118, 233108 (2015). DOI: 10.1063/1.4937896
  32. Yu.S. Gulina, S.I. Kudryashov, N.A. Smirnov, E.V. Kuzmin. Opt. Spectrosc., 130 (4), 390 (2022). DOI: 10.21883/EOS.2022.04.53724.45-21
  33. G.K. Krasin, M.S. Kovalev, P.A. Danilov, N.G. Stsepuro, E.A. Oleynichuk, S.A. Bibicheva, V.P. Martovitskii, S.I. Kudryashov. JETP Lett., 114, 117-123 (2021). DOI: 10.1134/S0021364021150054
  34. G.K. Krasin, M.S. Kovalev, S.A. Kudryashov, P.A. Danilov, V.P. Martovitskii, I.V. Gritsenko, I.M. Podlesnykh, R.A. Khmelnitskii, E.V. Kuzmin, Yu.S. Gulina, A.O. Levchenko. Appl. Surf. Sci., 595, 153549 (2022). DOI: 10.1016/j.apsusc.2022.153549
  35. Y. Lu, Y. Li, X. Xie, Z. Tang, L. Li, J. Li, Y. Ding. Front. Chem., 10 (2022). DOI: 10.3389/fchem.2022.1082651
  36. B. Zhang, X. Liu, J. Qiu. J. Materiomics, 5 (1), 1-14 (2019). DOI: 10.1016/j.jmat.2019.01.002
  37. B. Zhang, Z. Wang, D. Tan et al. PhotoniX, 4, 24 (2023). DOI: 10.1186/s43074-023-00101-8

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru