Physics of the Solid State
Volumes and Issues
Thermodynamic properties of Bi0.8DyxEr1-xFeO3
Kallaev S. N.1, OmarovZ.M.1, BilalovA.R.1, Amirov A. A.1, Makoed I. I.2, Janushkevich K. I.3, Abdullaev H. H.1
1Amirkhanov Institute of Physics, Daghestan Federal Research Center, Russian Academy of Sciences, Makhachkala, Russia
2Brest State University, Brest, Belarus
3Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus, Minsk, Belarus
Email: kallaev-s@rambler.ru, omarov_zairbek@mail.ru

PDF
The thermodynamic properties of the Bi0.2DyxEr1-xFeO3 multiferroic have been studied in the temperature range of 120-800 K. It is shown that when bismuth ferrite is doped with two rare-earth elements erbium and dysprosium, a two-phase rhombohedral R3c and orthorhombic Pnma structure is realized and leads to an additional contribution to the heat capacity in a wide temperature range, a shift in the temperature of the antiferromagnetic phase transition to the low temperature region and an increase in magnetization with an increase in the concentration of dysprosium. Additional information found on temperature dependencies anomaly of heat capacity and dielectric constant for compositions with x=0.05 and 0.15 at T~542 and 577 K, respectively, indicate that it may be due to a structural phase transition between rhombohedral and orthorhombic structures. Keywords: multiferroic, heat capacity, magnetization, phase transition, Schottky anomaly.
  1. B.G. Catalan, J.F. Scott. Adv. Materials 21, 24, 2463 (2009)
  2. A.P. Pyatakov, A.K. Zvezdin. Phys.-Usp. 55, 6, 557 (2012)
  3. J.H. Lee, I. Fina, X. Marti, Y.H. Kim, D. Hesse, M. Alexe. Adv. Materials 5, 26, 7078 (2014)
  4. I. Sosnowska, T. Peterlin-Neumaier, E.L. Steichele. J. Phys. C 15, 4835 (1982)
  5. I. Makoed, V. Prigodich, K. Yanushkevich, A. Zhivulko, V. Zhivulko, A. Galias, O. Demidenko, D. Krivchenya. Acta Phys. Polonica A 137, 5, 985 (2020)
  6. V.R. Palkar, D.C. Kundaliya, S.K. Malik, S. Bhattacharya. Phys. Rev. B 69, 212102 (2004)
  7. A.F. Ravinsky, I.I. Makoed, K. Kokoshkevich, K.I. Yanushkevich, A.I. Galyas, V.V. Triguk. Neorgan. materialy 43, 860 (2007). (in Russian)
  8. G. Alvarez, J. Contreras, A. Conde-Gallardo, H. Montiel, R. Zamorano. J. Magn. Magn. Materials 348, 17 (2013)
  9. S.N. Kallaev, Z.M. Omarov, A.R. Bilalov, A.Ya. Kurbataev, L.A. Reznichenko, S.V. Khasbulatov, R.M. Ferzilaev. FTT 60, 811 (2018). (in Russian)
  10. S.N. Kallaev, R.G. Mitarov, Z.M. Omarov, G.G. Gadzhiev, L.A. Reznichenko. ZhETF 145, 2, 320 (2014). (in Russian)
  11. E.D. Yakushkin. FTT 46, 325 (2004). (in Russian)
  12. S.N. Kallaev, Z.M. Omarov, R.G. Mitarov, A.R. Bilalov, K. Bormanis, S.A. Sadykov. ZhETF 138, 475 (2010). (in Russian)
  13. H. Dai, Zh. Chen, R. Xue, T. Li, J. Chen, H. Xiang. Ceram. Int. 39, 5373 (2013)
  14. R.L. White. J. Appl. Phys. 40, 1061 (1969)
  15. A. Moskvin. Magnetochemistry 7, 8, 111 (2021)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru