Simulation and measurement of stroke in piezoceramic combs with a decrease in cross-sectional area of control elements
Toporovsky V.V.1, Samarkin V.V.1, Kudryashov A.V.1, Galaktionov I.V.1, Panich A.A.2, Malykhin A.Yu.2
1Sadovsky Institute of Geosphere Dynamics of Russian Academy of Sciences. Moscow, Russia
2STCB ‘Piezopribor’, Institute for Advanced Technologies and Piezotechnics SFEDU, Rostov-on-Don, Russia
Email: topor@activeoptics.ru

PDF
Numerical modeling of multilayer piezoactuators with a cross-sectional area of 2x2 mm was carried out. It was shown that when interdigitated switching is used in piezoactuators, a local redistribution of transverse strain maxima is observed, which leads to a decrease in the mechanical strength and reliability of control elements. Piezoceramic combs with identical linear dimensions were produced and the mechanical and electrical properties of the developed elements were measured. It was revealed that stroke at a control voltage of 300 V decreases from 4 to 1.5 μm when using the interdigitated switching method in comparison with multilayer actuators of larger cross-section due to a decrease in the effective polarization area of piezoactuators. Piezoceramic combs with wire commutation were manufactured, where the displacement at a control voltage of 300 V was 4.6-4.8 μm. Keywords: wavefront correctors, multilayer piezoactuators, finite element method, adaptive optics.
  1. A. Aabid, M. Hrairi, S.J.M. Ali, Y.E. Ibrahim. ACS Omega, 8 (3), 2844?2860 (2023). DOI: 10.1021/acsomega.2c06573
  2. A. Aabid, M.A. Raheman, Y.E. Ibrahim, A. Anjum, M. Hrairi, B. Parveez, N. Parveen, J. Mohammed Zayan. Sensors, 21, 4145 (2021). DOI: 10.3390/s21124145
  3. J. Yang, Q. Zhang, T. Xu. Appl. Sci., 9, 4637 (2019). DOI: 10.3390/app9214637
  4. H. Chaudhary, S. Khatoon, R. Singh, A. Pandey. 3rd International Innovative Applications of Computational Intelligence on Power, Energy, and Controls with their Impact on Humanity (CIPECH), 1-5 (2018). DOI: 10.1109/CIPECH.2018.8724374
  5. B. Koc, S. Kist, A. Hamada. Actuators, 12, 136 (2023). DOI: 10.3390/act12040136
  6. Q. Duan, Y. Zheng, J. Jin, N. Hu, Z. Zhang, H. Hu. Micromachines, 14, 267 (2023). DOI: 10.3390/mi14020267
  7. Y. Zhang, X. Wang, X. Fu, Z. Zhang, Z. Li, Z. Li. Proceedings of the International Conference of Fluid Power and Mechatronic Control Engineering 2022, 10, 363?375 (2023). DOI: 10.2991/978-94-6463-022-0_31
  8. V. Toporovsky, A. Kudryashov, V. Samarkin, J. Sheldakova, A. Rukosuev. Proc. SPIE, 10898, 1089809 (2019). DOI: 10.1117/12.2510144
  9. V. Toporovsky, A. Kudryashov, A. Skvortsov, A. Rukosuev, V. Samarkin, I. Galaktionov. Photonics, 9 (5), 321 (2022). DOI: 10.3390/photonics9050321
  10. K. Ahn, H.-G. Rhee, H.-S. Yang, H. Kihm. Opt. Express, 26, 9724-9739 (2018). DOI: 10.1364/OE.26.009724
  11. D. Alaluf, R. Bastaits, K. Wang, M. Horodinca, G. Martic, B. Mokrani, A. Preumont. Appl. Opt., 57, 3629?3638 (2018). DOI: 10.1364/AO.57.003629
  12. V. Samarkin, A. Alexandrov, I. Galaktionov, A. Kudryashov, A. Nikitin, A. Rukosuev, V. Toporovsky, Sheldakova. J. Appl. Sci., 12, 1144 (2022). DOI: 10.3390/app12031144
  13. Y.-G. Kim, J.-H. Song, S. Hong, S.-H. Ahn. Flex Electron, 6, 52 (2022). DOI: 10.1038/s41528-022-00186-4
  14. S.S. Won, H. Seo, M. Kawahara, S. Glinsek, J. Lee, Y. Kim, C.K. Jeong, A.I. Kingon, S.-H. Kim. Nano Energy, 55, 182-192 (2019). DOI: 10.1016/j.nanoen.2018.10.068
  15. S.Q. Zhang, Y.S. Gao, G.Z. Zhao, H.Y. Pu, M. Wang, J.H. Ding, Y. Sun. Composite Structures, 278, 114703 (2021). DOI: 10.1016/j.compstruct.2021.114703
  16. V.-T. Nguyen, P. Kumar, J.Y.C. Leong. Computation, 6, 60 (2018). DOI: 10.3390/computation6040060
  17. V. Toporovsky, V. Samarkin, A. Kudryashov, A. Panich, A. Sokallo, A. Malykhin, J. Sheldakova. Proc. SPIE, 11987, 119870M (2022). DOI: 10.1117/12.2614509
  18. V.V. Samarkin, A.G. Alexandrov, I.V. Galaktionov, A.V. Kudryashov, A.N. Nikitin, A.L. Rukosuev, V.V. Toporovsky, Yu.V. Sheldakova. Quantum Electronics, 52(2), 187-194 (2022). DOI: 10.1070/QEL17989
  19. L. Sun, Y. Zheng, C. Sun, L. Huang, Opt. Express, 26, 23613-23628 (2018). DOI: 10.1364/OE.26.023613
  20. Y. Zheng, Y. Zhuang, S. Lin, D. Wang, Y. Zhang, L. Huang. Front. Phys., 11, 1136349 (2023). DOI: 10.3389/fphy.2023.1136349
  21. V. Toporovsky, V. Samarkin, A. Kudryashov, I. Galaktionov, A. Malykhin, A. Panich. Izvestiya RAN. Seriya fizicheskaya, 87, 1637-1641 (2023) (in Russian). DOI: 10.3103/S1062873823703914
  22. J. Pritchard, C.R. Bowen, F. Lowrie. British Ceramic Transactions, 100, 265-273 (2001). DOI: 10.1179/bct.2001.100.6.265

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru