Luminescent thermometry and up-conversion in LiNbO3: Er crystals
Skvortsov A. P. 1, Voronov M. M. 1, Pevtsov A. B.1, Starukhin A. N.1, Reznitsky A. N.1, Polgar K.2
1Ioffe Institute, St. Petersburg, Russia
2Wigner Research Centre for Physics of HAS, Budapest, Hungary
Email: Pevtsov@gvg.mail.ioffe.ru, a.starukhin@mail.ioffe.ru, alexander.reznitsky@mail.ioffe.ru, polkati@yahoo.ru

PDF
This paper presents the results of studying the temperature dependence of up-conversion "green" photoluminescence (PL) in a congruent LiNbO3: Er3+ crystal excited by a laser diode operating at a wavelength of 808 nm. The study covers the temperature range from 77 to 413 K. Our results show that the temperature-dependent intensity ratio of green PL emitted by thermally bound states of the erbium ion (2H11/2 and 4S3/2) can be used as a thermometric sensor. It is noteworthy that LiNbO3: Er3+ exhibits absolute temperature sensitivity (0.0044-0.0055 K-1), which is one of the highest for materials activated by rare-earth ions, in the temperature range of 20-50oC, which is relevant for physiological measurements. This observation suggests that materials based on LiNbO3: Er3+ have great prospects for optical (contactless) temperature measurements in biological media. Keywords: Photoluminescence, Erbium, Up-conversion, Thermometry.
  1. D. Jaque, F. Vetrone. Nanoscale, 4, 4301 (2012). DOI: 10.1039/c2nr30764b
  2. G. Xiang, Q. Xia, X. Liu,, X. Wang. Dalton Trans., 49, 17115 (2020). DOI: 10.1039/D0DT03100C
  3. C. Wang, Y. Jin, R. Zhang, Q. Yao, Y. Hu. J. of Alloys and Compounds, 894, 162494 (2022). DOI: 10.1016/j.jallcom.2021.162494
  4. X. Liu, Y. Chen, F. Shang, G. Chen, J. Xu1. J. of Materials Science: Materials in Electronics, 30, 5718 (2019). DOI: 10.1007/s10854-019-00865-5
  5. R. Voszka. Acta Physica Hungarica, 57, 179 (1985). DOI: 10.1007/BF03158887
  6. N.A. Teplyakova, N.V. Sidorov, M.N. Palatnikov, A.V. Syui, D.S. Shtarev. Neorgan. mater, 53, 1211 (2017) (in Russian)
  7. J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li. Chem. Rev., 115, 395 (2015). DOI: 10.1021/cr400478f
  8. Q.-C. Sun, Y.C. Ding, D.M. Sagar, P. Nagpal. Prog. Surf. Sci., 92, 281 (2017). DOI: 10.1016/j.progsurf.2017.09.003
  9. M.M. Voronov, A.B. Pevtsov, A.P. Skvortsov, C. Koughia, C. Craig, D.W. Hewak, S. Kasap, V.G. Golubev. Phys. Status Solidi A, 217, 2000448 (2020). DOI: 10.1002/pssa.202000448
  10. M.M. Voronov, A.P. Skvortsov, A.B. Pevtsov, C. Craig, D.W. Hewak, C. Koughia, S. Kasap. J. Luminescence, 257, 119642 (2023). DOI: 10.1016/j.jlumin.2022.119642
  11. J.B. Gruber, G.W. Burdick, S. Chandra, D.K. Sardar. J. Appl. Phys., 108, 023109 (2010). DOI: 10.1063/1.3465615
  12. D.E. McCumber. Phys. Rev., 136, A954 (1964). DOI: 10.1103/physrev.136a954
  13. R.S. Quimby. J. Appl. Phys., 92, 180 (2002). DOI: 10.1063/1.1485112

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru