Physics of the Solid State
Volumes and Issues
Paramagnetic Tb3+ centers in yttrium aluminum garnet
Asatryan G. R.1, Shakurov G. S. 2, Romanov N. G.1, Petrosyan A. G.3
1Ioffe Institute, St. Petersburg, Russia
2Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia
3Institute for Physical Research, National Academy of Sciences of Armenia, Ashtarak, Armenia
Email: shakurov@kfti.knc.ru, ashot.petrosyan783@gmail.com

PDF
Yttrium-aluminum garnet crystals with terbium impurity were studied by high-frequency EPR in a wide frequency range (70-200 GHz). Along with the Tb3+ ions located in the yttrium position in a regular environment, a number of terbium centers with a lower concentration and changed values of the initial splitting of the non-Kramers quasi-doublets were observed. The change in the initial splitting is associated with the presence of antisite defects in the terbium environment. The terbium centers with a smaller initial splitting as compared to the main Tb3+ were found and attributed to terbium ions, near which there are AlY antisite defects (aluminum ions in dodecahedral positions of yttrium). Keywords: electron paramagnetic resonance, yttrium aluminum garnet, rare earth elements, terbium, antisite defects.
  1. A.A. Kaminskii. Laser Crystals: Their Physics and Properties. Springer, Berlin (1990)
  2. V. Bachmann, C. Ronda, A. Meijerink. Chem. Mater. 21,
  3. Y.S. Lin, R.S. Liu, B.-M. Cheng. J. Electrochem. Soc. 152, 6, J41 (2005)
  4. A.C. Dujardin, E. Auffray, E. Bourret-Courchesne, P. Dorenbos, P. Lecoq, M. Nikl, A.N. Vasil'ev, A. Yoshikawa, R.-Y. Zhu. IEEE Trans. Nucl. Sci. 65, 8, 1977 (2018)
  5. P. Slyushev, K. Xia, R. Reuter, M. Jamali, N. Zhao, N. Yang, C. Duan, N. Kukharchyk, A.D. Wieck, R. Kolesov, J. Wrachtrup. Nature Commun. 5, 1, 3895 (2014)
  6. I. Kandarakis, D. Cavouras, G.S. Panayiotakis, C.D. Nomicos. Phys. Med. Biol. 42, 7, 1351 (1997)
  7. D.J. Robbins, B. Cockayne, B. Lent, C.N. Duckworth, J.L. Glasper. Phys. Rev. B 19, 2, 1254 (1979)
  8. Y.C. Kang, I.W. Lenggoro, S.B. Park, K. Okuyama. J. Phys. Chem. Solids 60, 11, 1855 (1999)
  9. J. Dai, M. Cao, H. Kou, Y. Pan, J. Guo, J. Li. Ceram. Int. 42, 12, 13812 (2016)
  10. C. Krankel, D.T. Marzahl, F. Moglia, G. Huber, P. Metz. Las. Photon. Rev. 10, 4, 548 (2016)
  11. S. Kalusniak, E. Castellano-Hernandez, H. Yal cinov glu, H. Tanaka, C. Krankel. Appl. Phys. B 128, 2, 33 (2022)
  12. V. Khanin, A.-M. van Dongen, D. Buettner, C. Ronda, P. Rodnyi. ECS J. Solid State Sci. Technol. 4, 8, R128 (2015)
  13. J.M. Ogieg o, A. Zych, K.V. Ivanovskikh, T. Justel, C.R. Ronda, A. Meijerink. J. Phys. Chem. A 116, 33, 8464 (2012)
  14. M. Gong, W. Xiang, X. Liang, J. Zhong, D. Chen, J. Huang, G. Gu, C. Yang, R. Xiang. J. Alloys. Compounds 639, 611 (2015)
  15. M.M. Kuklja. J. Phys.: Condens. Matter 12, 13, 2953 (2000)
  16. B. Liu, M. Gu, X. Liu, S. Huang, C. Ni. Appl. Phys. Lett. 94, 12, 121910 (2009)
  17. G.R. Asatryan, D.D. Kramushchenko, Yu.A. Uspenskaya, P.G. Baranov, A.G. Petrosyan. Phys. Solid State 56, 6, 1150 (2014)
  18. A. Abraham, B. Bleaney. Electron Paramagnetic Resonance of Transition Ions. Clarendon, Oxford (1970)
  19. J.M. Baker, B. Bleaney. Proc. Phys. Soc. A 68, 3, 257 (1955)
  20. P.A. Forrester, C.F. Hempstead. Phys. Rev. 126, 3, 923 (1962)
  21. A.A. Antipin, L.D. Livanova, L.Ya. Shekun. FTT 10, 5, 1286 (1968). (in Russian)
  22. I. Laursen, L.M. Holmes. J. Phys. C 7, 20, 3765 (1974)
  23. J.W. Jewett, P.E. Wigen. J. Chem. Phys. 61, 8, 2991 (1974)
  24. J.M. Baker, C.A. Hutchison, M.J.M. Leask, P.M. Martineau, M.G. Robinson, M.R. Wells. Proceed. R. Soc. Lond. A 413, 1845, 515 (1987)
  25. M.R. Gafurov, V.A. Ivanshin, I.N. Kurkin, M.P. Rodionova, H. Keller, M. Gutmann, U. Staub. J. Superconductivity. Nov. Magn. 13, 6, 895 (2000)
  26. G.S. Shakurov, B.Z. Malkin, A.R. Zakirov, A.G. Okhrimchuk, L.N. Butvina, N.V. Lichkova, V.N. Zavgorodnev. Appl. Magn. Res. 26, 4, 579 (2004)
  27. A.A. Konovalov, D.A. Lis, K.A. Subbotin, V.F. Tarasov, E.V. Zharikov. Appl. Magn. Reson. 45, 2, 193 (2014)
  28. G.R. Asatryan, G.S. Shakurov, I.V. Il'in, A.G. Petrosyan, K.L. Ovanesyan, M.V. Derdzyan. Phys. Solid State 63, 12, 1879 (2021)
  29. G.R. Asatryan, G.S. Shakurov, K.L. Hovhannesyan, A.G. Petrosyan. Phys. Solid State 65, 3, 406 (2023)
  30. E.V. Edinach, Y.A. Uspenskaya, A.S. Gurin, R.A. Babunts, H.R. Asatryan, N.G. Romanov, A.G. Badalyan, P.G. Baranov. Phys. Rev. B 100, 10, 104435 (2019)
  31. G.R. Asatryan, E.V. Edinach, Yu.A. Uspenskaya, R.A. Babunts, A.G. Badalyan, N.G. Romanov, A.G. Petrosyan, P.G. Baranov. Phys. Solid State 62, 11, 2110 (2020)
  32. Kh.S. Bagdasarov. Kristallizatsiya iz rasplava. Sovremennaya kristallografiya / Pod red. B.K. Vaynshtein. Nauka, M. (1980). T. 3. S. 337. (In Russian)
  33. A.G. Petrosyan. J. Cryst.Growth 139, 3--4, 372 (1994)
  34. A.G. Petrosyan, G.O. Shirinyan, K.L. Ovanesyan, A.A. Avetisyan. Cryst. Res. Technol. 13, 1, 43 (1978)
  35. B. Cockayne, J.M. Roslington, A.W. Vere. J. Mater. Sci. 8, 3, 382 (1973)
  36. A.A. Chernov. Ann. Rev. Mater. Res. 3, 397 (1973)
  37. V.F. Tarasov, G.S. Shakurov. Appl. Magn. Reson. 2, 3, 571 (1991).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru