The dependencies of the melting point of Au, Pt and Fe on the nanocrystal size and shape at different pressures
Magomedov M. N.
11Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru
A method is proposed for calculating the dependence of the melting temperature on the size (number of atoms N) and the nanocrystal surface shape at the different pressures (P). This method is based on the paired Mie-Lennard-Jones interatomic interaction potential, and takes into account the dependence of both the state equation and other lattice properties on the nanocrystal size and shape. For the first time, the dependences of the melting temperature (Tm) on the pressure P, size N, and shape parameter f of the nanocrystal were obtained. Calculations have been performed for gold, platinum and iron. It is shown that at any pressure, the T_m(P,N,f) function decreases both with an isomorphic-isobaric (f,P - const) decrease in the number of N atoms, and with an isomeric-isobaric (N,P - const) deviation of the nanocrystal shape from the energy-optimal shape. It is shown that the value of the baric derivative of the melting temperature T'_m(P) for a nanocrystal at low pressures is larger and at high pressures smaller than the value T'_m(P) for a macrocrystal. Moreover, the dependence of the T'_m(P) function on the nanocrystal size is negligible, i. e., the functions T_m(P,бесконечность) and T_m(P,N,f) are almost parallel at constant N-f-arguments. It is indicated how this method can be applied to experimentally estimate the pressure under which a nanocrystal is confined in a refractory matrix. Keywords: nanocrystal, melting point, state equation, gold, platinum, iron.
- N.R.C. Corsini, W.R. Little, A. Karatutlu, Y. Zhang, O. Ersoy, P.D. Haynes, C. Molteni, N.D.M. Hine, I. Hernandez, J. Gonzalez, F. Rodriguez, V.V. Brazhkin, A. Sapelkin. Nano Lett. 15, 11, 7334 (2015). https://doi.org/10.1021/acs.nanolett.5b02627
- F. Bai, K. Bian, X. Huang, Z. Wang, H. Fan. Chem. Rev. 119, 12, 7673 (2019). https://doi.org/10.1021/acs.chemrev.9b00023
- Y. Chen, Z. Lai, X. Zhang, Z. Fan, Q. He, C. Tan, H. Zhang. Nature Rev. Chem. 4, 5, 243 (2020). https://doi.org/10.1038/s41570-020-0173-4
- T. Xiao, Y. Nagaoka, X. Wang, T. Jiang, D. Lamontagne, Q. Zhang, C. Cao, X. Diao, J. Qiu, Y. Lu, Z. Wang, Y.C. Cao. Science 377, 6608, 870 (2022). https://doi.org/10.1126/science.abq7684
- I.M. Padilla Espinosa, T.D.B. Jacobs, A. Martini. Nanoscale Res. Lett. 17, 1, 96 (2022). https://doi.org/10.1186/s11671-022-03734-z
- D. Vollath, F.D. Fischer, D. Holec. Beilstein J. Nanotechnology 9, 1, 2265 (2018). https://doi.org/10.3762/bjnano.9.211
- X. Zhang, W. Li, H. Kou, J. Shao, Y. Deng, X. Zhang, J. Ma, Y. Li, X. Zhang. J. Appl. Phys. 125, 18, 185105 (2019). https://doi.org/10.1063/1.5090301
- A. Forslund, A. Ruban. Phys. Rev. B 105, 4, 045403 (2022). https://doi.org/10.1103/PhysRevB.105.045403
- A.S. Kholtobina, A. Forslund, A.V. Ruban, B. Johansson, N.V. Skorodumova. Phys. Rev. B 107, 3, 035407 (2023). https://doi.org/10.1103/PhysRevB.107.035407
- S. Zhu, K. Xie, Q. Lin, R. Cao. Adv. Colloid Interface Sci. 315, 102905 (2023). https://doi.org/10.1016/j.cis.2023.102905
- M.N. Magomedov. FTT 64, 7, 765 (2022). (in Russian). https://doi.org/10.21883/FTT.2022.07.52559.319. [M.N. Magomedov. Phys. Solid State 64, 7, 765 (2022).] https://doi.org/10.21883/PSS.2022.07.54579.319]
- M.N. Magomedov. FTT 65, 5, 734 (2023). (in Russian). https://doi.org/10.21883/FTT.2023.05.55489.46. [M.N. Magomedov. Phys. Solid State 65, 5, 708 (2023). https://doi.org/10.21883/PSS.2023.05.56040.46]
- M.N. Magomedov. Crystallography Rep. 62, 3, 480 (2017). https://doi.org/10.1134/S1063774517030142
- M.N. Magomedov. FTT 62, 12, 2034 (2020). (in Russian). https://doi.org/10.21883/FTT.2020.12.50206.172. [M.N. Magomedov. Phys. Solid State 62, 12, 2280 (2020). https://doi.org/10.1134/S1063783420120197]
- E.N. Ahmedov. J. Phys.: Conf. Ser. 1348, 012002, 1 (2019). https://doi.org/10.1088/1742-6596/1348/1/012002
- S.P. Kramynin. Phys. Met. Metallography 123, 2, 107 (2022). https://doi.org/10.1134/S0031918X22020065
- S.P. Kramynin. J. Phys. Chem. Solids 152, 109964 (2021). https://doi.org/10.1016/j.jpcs.2021.109964
- S.P. Kramynin. Solid State Sci. 124, 106814 (2022). https://doi.org/10.1016/j.solidstatesciences.2022.106814.
- R. Briggs, F. Coppari, M.G. Gorman, R.F. Smith, S.J. Tracy, A.L. Coleman, A. Fernandez-Panella, M. Millot, J.H. Eggert, D.E. Fratanduono. Phys. Rev. Lett. 123, 4, 045701 (2019). https://doi.org/10.1103/PhysRevLett.123.045701
- D.E. Fratanduono, M. Millot, D.G. Braun, S.J. Ali, A. Fernandez-Panella, C.T. Seagle, J.-P. Davis, J.L. Brown, Y. Akahama, R.G. Kraus, M.C. Marshall, R.F. Smith, E.F. O'Bannon III, J.M. Mcnaney, J.H. Eggert. Science 372, 6546, 1063 (2021). https://doi.org/10.1126/science.abh0364
- T. Castro, R. Reifenberger, E. Choi, R.P. Andres. Phys.Rev. B 42, 13, 8548 (1990). https://doi.org/10.1103/PhysRevB.42.8548
- M.N. Magomedov. FTT 63, 9, 1415 (2021). (in Russian). https://doi.org/10.21883/FTT.2021.09.51279.080. [M.N. Magomedov. Phys. Solid State 63, 10, 1465 (2021). https://doi.org/10.1134/S1063783421090250]
- G. Weck, V. Recoules, J.A. Queyroux, F. Datchi, J. Bouchet, S. Ninet, G. Garbarino, M. Mezouar, P. Loubeyre. Phys. Rev. B 101, 1, 014106 (2020). https://doi.org/10.1103/PhysRevB.101.014106
- P. Cheyssac, R. Kofman, R. Garrigos. Phys. Scripta 38, 2, 164 (1988). https://doi.org/10.1088/0031-8949/38/2/009
- R. Garrigos, P. Cheyssac, R. Kofman. Mol. Clusters 12, 1--4, 497 (1989). https://doi.org/10.1007/BF01427006
- S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen. Phys. Rev. Lett. 77, 1, 99 (1996). https://doi.org/10.1103/PhysRevLett.77.99
- G. Kellermann, A.F. Craievich. Phys. Rev. B 78, 5, 054106 (2008). https://doi.org/10.1103/physrevb.78.054106
- T.S. Zhu, M. Li. Mater. Res. Bull. 63, 253 (2015). https://doi.org/10.1016/j.materresbull.2014.12.010
- F. Ercolessi, W. Andreoni, E. Tosatti. Phys. Rev. Lett. 66, 7, 911 (1991). https://doi.org/10.1103/physrevlett.66.911
- F. Delogu. Phys. Rev. B 72, 1, 205418 (2005). https://doi.org/10.1103/PhysRevB.72.205418
- M.N. Magomedov. Tech. Phys. 56, 9, 1277 (2011). https://doi.org/10.1134/S106378421109012X
- M.N. Magomedov. Tech. Phys. 59, 5, 675 (2014). https://doi.org/10.1134/S1063784214050211
- M.N. Magomedov. Tech. Phys. 61, 5, 730 (2016). https://doi.org/10.1134/S1063784216050157
- M.N. Magomedov. J. Surface Investigation. X-ray, Synchrotron Neutron Techn. 13, 5, 880 (2019). https://doi.org/10.1134/S1027451019050070
- L.A. Girifalco. Statistical Physics of Materials. J. Wiley and Sons Ltd., N.Y. (1973). 346 p
- P.I. Dorogokupets, T.S. Sokolova, B.S. Danilov, K.D. Litasov. Geodynamics \& Tectonophysics 3, 2, 129 (2012)]. https://doi.org/10.5800/GT-2012-3-2-0067
- M. Mohr, A. Caron, P. Herbeck-Engel, R. Bennewitz, P. Gluche, K. Bruhne, H.-J. Fecht. J. Appl. Phys. 116, 12, 124308 (2014). https://doi.org/10.1063/1.4896729
- A. Rida, E. Rouhaud, A. Makke, M. Micoulaut, B. Mantisi. Phil. Mag. 97, 27, 2387 (2017). https://doi.org/10.1080/14786435.2017.1334136
- M. Goyal, B.R.K. Gupta. Mod. Phys. Lett. B 33, 26, 1950310 (2019). https://doi.org/10.1142/s021798491950310x
- J. Li, B. Lu, H. Zhou, C. Tian, Y. Xian, G. Hu, R. Xia. Phys. Lett. A 383, 16, 1922 (2019). https://doi.org/10.1016/j.physleta.2018.10.053
- C.Q. Sun. Prog. Mater. Sci. 54, 2, 179 (2009). https://doi.org/10.1016/j.pmatsci.2008.08.001
- I.F. Golovnev, E.I. Golovneva. Phys. Mesomech. 23, 3, 189 (2020). https://doi.org/10.1134/S1029959920030017
- X. Wei, D.J. Shu. Phys. Rev. B 106, 19, 195419 (2022). https://doi.org/10.1103/PhysRevB.106.195419
- M. Zhao, Y. Xia. Nature Rev. Mater. 5, 6, 440 (2020). https://doi.org/10.1038/s41578-020-0183-3
- M.G. Pamato, I.G. Wood, D.P. Dobson, S.A. Hunt, L. Vov cadlo. J. Appl. Crystallography 51, 2, 470 (2018). https://doi.org/10.1107/S1600576718002248
- T. Tsuchiya. J. Geophys. Res. 108, B10, 2462 (2003). https://doi.org/10.1029/2003JB002446
- M. Zhu, J. Liu, Q. Huang, J. Dong, X. Yang. J. Phys. D 55, 48, 485303 (2022). https://doi.org/10.1088/1361-6463/ac9485
- D. Errandonea. J. Appl. Phys. 108, 3, 033517 (2010). https://doi.org/10.1063/1.3468149
- E.N. Ahmedov. Physica B: Condens. Matter 571, 252 (2019). https://doi.org/10.1016/j.physb.2019.07.027
- J. Chen, X. Fan, J. Liu, C. Gu, Y. Shi, D.J. Singh, W. Zheng. J. Phys. Chem. C 124, 13, 7414 (2020). https://doi.org/10.1021/acs.jpcc.9b10769
- D. Shekhawat, M. Vauth, J. Pezoldt. Inorganics 10, 4, 56 (2022). https://doi.org/10.3390/inorganics10040056
- D.M. Foster, T. Pavloudis, J. Kioseoglou, R.E. Palmer. Nature Commun. 10, 1, 2583 (2019). https://doi.org/10.1038/s41467-019-10713-z
- C. Zeni, K. Rossi, T. Pavloudis, J. Kioseoglou, S. de Gironcoli, R.E. Palmer, F. Baletto. Nature Commun. 12, 1, 6056 (2021). https://doi.org/10.1038/s41467-021-26199-7
- M.N. Magomedov. Phys. Solid State 46, 5, 954 (2004). https://doi.org/10.1134/1.1744976
- D. Errandonea. Phys. Rev. B 87, 5, 054108 (2013). https://doi.org/10.1103/PhysRevB.87.054108
- N.N. Patel, M. Sunder. High pressure melting curve of platinum up to 35 GPa. AIP Conf. Proc. AIP Publishing LLC 1942, 1, 030007 (2018). https://doi.org/10.1063/1.5028588
- S. Anzellini, V. Monteseguro, E. Bandiello, A. Dewaele, L. Burakovsky, D. Errandonea. Sci. Rep. 9, 13034, 1 (2019). https://doi.org/10.1038/s41598-019-49676-y
- Z.M. Geballe, N. Holtgrewe, A. Karandikar, E. Greenberg, V.B. Prakapenka, A.F. Goncharov. Phys. Rev. Mater. 5, 3, 033803 (2021). https://doi.org/10.1103/PhysRevMaterials.5.033803
- V.M. Samsonov, A.A. Romanov, A.Y. Kartoshkin, I.V. Talyzin, V.V. Puytov. Appl. Phys. A 128, 9, 826 (2022). https://doi.org/10.1007/s00339-022-05922-1
- E. Toulkeridou, J. Kioseoglou, P. Grammatikopoulos. Nanoscale Adv. 4, 22, 4819 (2022). https://doi.org/10.1039/d2na00418f
- H.M. Strong, R.E. Tuft, R.E. Hanneman. Metallurgical Transact. 4, 2657 (1973). https://doi.org/10.1007/BF02644272
- L.J. Swartzendruber. Bull. Alloy Phase Diagrams 3, 2, 161 (1982). https://doi.org/10.1007/BF02892374
- Q. Williams, R. Jeanloz, J. Bass, B. Svendsen, T.J. Ahrens. Science 236, 4798, 181 (1987). https://doi.org/10.1126/science.236.4798.181
- R. Boehler. Nature 363, 6429, 534 (1993). https://doi.org/10.1038/363534a0
- S. Anzellini, A. Dewaele, M. Mezouar, P. Loubeyre, G. Morard. Science 340, 6131, 464 (2013). https://doi.org/10.1126/science.1233514
- P.I. Dorogokupets, A.M. Dymshits, K.D. Litasov, T.S. Sokolova. Sci. Rep. 7, 1, 1 (2017). https://doi.org/10.1038/srep41863
- I.C. Ezenwa, Y. Fei. Geophys. Res. Lett. 50, 6, e2022GL102006 (2023). https://doi.org/10.1029/2022GL102006
- M.N. Magomedov. Phys. Solid State 63, 2, 215 (2021). https://doi.org/10.1134/S1063783421020165
- M.N. Magomedov. J. Phys. Chem. Solids 151, 109905 (2021). https://doi.org/10.1016/j.jpcs.2020.109905
- M.N. Magomedov. Phys. Solid State 64, 13, 2121 (2022). https://doi.org/10.21883/PSS.2022.13.52307.145
- M.N. Magomedov. ZhTF 93, 2, 221 (2023). (in Russian). https://doi.org/10.21883/JTF.2023.02.54496.190-22. [M.N. Magomedov. Tech. Phys. 68, 2, 209 (2023). https://doi.org/10.21883/TP.2023.02.55474.190-22]
- T.D. Cuong, A.D. Phan. Vacuum 185, 110001 (2021). https://doi.org/10.1016/j.vacuum.2020.110001
- T.D. Cuong, N.Q. Hoc, N.D. Trung, N.T. Thao, A.D. Phan. Phys. Rev. B 106, 9, 094103 (2022). https://doi.org/10.1103/PhysRevB.106.094103
- W.H. Qi, M.P. Wang. Mater. Lett. 59, 18, 2262 (2005). https://doi.org/10.1016/j.matlet.2004.06.079
- M.A. Jabbareh. Solid State Commun. 355, 114923 (2022). https://doi.org/10.1016/j.ssc.2022.114923.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.