Physics of the Solid State
Volumes and Issues
The dependencies of the melting point of Au, Pt and Fe on the nanocrystal size and shape at different pressures
Magomedov M. N. 1
1Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru

PDF
A method is proposed for calculating the dependence of the melting temperature on the size (number of atoms N) and the nanocrystal surface shape at the different pressures (P). This method is based on the paired Mie-Lennard-Jones interatomic interaction potential, and takes into account the dependence of both the state equation and other lattice properties on the nanocrystal size and shape. For the first time, the dependences of the melting temperature (Tm) on the pressure P, size N, and shape parameter f of the nanocrystal were obtained. Calculations have been performed for gold, platinum and iron. It is shown that at any pressure, the T_m(P,N,f) function decreases both with an isomorphic-isobaric (f,P - const) decrease in the number of N atoms, and with an isomeric-isobaric (N,P - const) deviation of the nanocrystal shape from the energy-optimal shape. It is shown that the value of the baric derivative of the melting temperature T'_m(P) for a nanocrystal at low pressures is larger and at high pressures smaller than the value T'_m(P) for a macrocrystal. Moreover, the dependence of the T'_m(P) function on the nanocrystal size is negligible, i. e., the functions T_m(P,бесконечность) and T_m(P,N,f) are almost parallel at constant N-f-arguments. It is indicated how this method can be applied to experimentally estimate the pressure under which a nanocrystal is confined in a refractory matrix. Keywords: nanocrystal, melting point, state equation, gold, platinum, iron.
  1. N.R.C. Corsini, W.R. Little, A. Karatutlu, Y. Zhang, O. Ersoy, P.D. Haynes, C. Molteni, N.D.M. Hine, I. Hernandez, J. Gonzalez, F. Rodriguez, V.V. Brazhkin, A. Sapelkin. Nano Lett. 15, 11, 7334 (2015). https://doi.org/10.1021/acs.nanolett.5b02627
  2. F. Bai, K. Bian, X. Huang, Z. Wang, H. Fan. Chem. Rev. 119, 12, 7673 (2019). https://doi.org/10.1021/acs.chemrev.9b00023
  3. Y. Chen, Z. Lai, X. Zhang, Z. Fan, Q. He, C. Tan, H. Zhang. Nature Rev. Chem. 4, 5, 243 (2020). https://doi.org/10.1038/s41570-020-0173-4
  4. T. Xiao, Y. Nagaoka, X. Wang, T. Jiang, D. Lamontagne, Q. Zhang, C. Cao, X. Diao, J. Qiu, Y. Lu, Z. Wang, Y.C. Cao. Science 377, 6608, 870 (2022). https://doi.org/10.1126/science.abq7684
  5. I.M. Padilla Espinosa, T.D.B. Jacobs, A. Martini. Nanoscale Res. Lett. 17, 1, 96 (2022). https://doi.org/10.1186/s11671-022-03734-z
  6. D. Vollath, F.D. Fischer, D. Holec. Beilstein J. Nanotechnology 9, 1, 2265 (2018). https://doi.org/10.3762/bjnano.9.211
  7. X. Zhang, W. Li, H. Kou, J. Shao, Y. Deng, X. Zhang, J. Ma, Y. Li, X. Zhang. J. Appl. Phys. 125, 18, 185105 (2019). https://doi.org/10.1063/1.5090301
  8. A. Forslund, A. Ruban. Phys. Rev. B 105, 4, 045403 (2022). https://doi.org/10.1103/PhysRevB.105.045403
  9. A.S. Kholtobina, A. Forslund, A.V. Ruban, B. Johansson, N.V. Skorodumova. Phys. Rev. B 107, 3, 035407 (2023). https://doi.org/10.1103/PhysRevB.107.035407
  10. S. Zhu, K. Xie, Q. Lin, R. Cao. Adv. Colloid Interface Sci. 315, 102905 (2023). https://doi.org/10.1016/j.cis.2023.102905
  11. M.N. Magomedov. FTT 64, 7, 765 (2022). (in Russian). https://doi.org/10.21883/FTT.2022.07.52559.319. [M.N. Magomedov. Phys. Solid State 64, 7, 765 (2022).] https://doi.org/10.21883/PSS.2022.07.54579.319]
  12. M.N. Magomedov. FTT 65, 5, 734 (2023). (in Russian). https://doi.org/10.21883/FTT.2023.05.55489.46. [M.N. Magomedov. Phys. Solid State 65, 5, 708 (2023). https://doi.org/10.21883/PSS.2023.05.56040.46]
  13. M.N. Magomedov. Crystallography Rep. 62, 3, 480 (2017). https://doi.org/10.1134/S1063774517030142
  14. M.N. Magomedov. FTT 62, 12, 2034 (2020). (in Russian). https://doi.org/10.21883/FTT.2020.12.50206.172. [M.N. Magomedov. Phys. Solid State 62, 12, 2280 (2020). https://doi.org/10.1134/S1063783420120197]
  15. E.N. Ahmedov. J. Phys.: Conf. Ser. 1348, 012002, 1 (2019). https://doi.org/10.1088/1742-6596/1348/1/012002
  16. S.P. Kramynin. Phys. Met. Metallography 123, 2, 107 (2022). https://doi.org/10.1134/S0031918X22020065
  17. S.P. Kramynin. J. Phys. Chem. Solids 152, 109964 (2021). https://doi.org/10.1016/j.jpcs.2021.109964
  18. S.P. Kramynin. Solid State Sci. 124, 106814 (2022). https://doi.org/10.1016/j.solidstatesciences.2022.106814.
  19. R. Briggs, F. Coppari, M.G. Gorman, R.F. Smith, S.J. Tracy, A.L. Coleman, A. Fernandez-Panella, M. Millot, J.H. Eggert, D.E. Fratanduono. Phys. Rev. Lett. 123, 4, 045701 (2019). https://doi.org/10.1103/PhysRevLett.123.045701
  20. D.E. Fratanduono, M. Millot, D.G. Braun, S.J. Ali, A. Fernandez-Panella, C.T. Seagle, J.-P. Davis, J.L. Brown, Y. Akahama, R.G. Kraus, M.C. Marshall, R.F. Smith, E.F. O'Bannon III, J.M. Mcnaney, J.H. Eggert. Science 372, 6546, 1063 (2021). https://doi.org/10.1126/science.abh0364
  21. T. Castro, R. Reifenberger, E. Choi, R.P. Andres. Phys.Rev. B 42, 13, 8548 (1990). https://doi.org/10.1103/PhysRevB.42.8548
  22. M.N. Magomedov. FTT 63, 9, 1415 (2021). (in Russian). https://doi.org/10.21883/FTT.2021.09.51279.080. [M.N. Magomedov. Phys. Solid State 63, 10, 1465 (2021). https://doi.org/10.1134/S1063783421090250]
  23. G. Weck, V. Recoules, J.A. Queyroux, F. Datchi, J. Bouchet, S. Ninet, G. Garbarino, M. Mezouar, P. Loubeyre. Phys. Rev. B 101, 1, 014106 (2020). https://doi.org/10.1103/PhysRevB.101.014106
  24. P. Cheyssac, R. Kofman, R. Garrigos. Phys. Scripta 38, 2, 164 (1988). https://doi.org/10.1088/0031-8949/38/2/009
  25. R. Garrigos, P. Cheyssac, R. Kofman. Mol. Clusters 12, 1--4, 497 (1989). https://doi.org/10.1007/BF01427006
  26. S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen. Phys. Rev. Lett. 77, 1, 99 (1996). https://doi.org/10.1103/PhysRevLett.77.99
  27. G. Kellermann, A.F. Craievich. Phys. Rev. B 78, 5, 054106 (2008). https://doi.org/10.1103/physrevb.78.054106
  28. T.S. Zhu, M. Li. Mater. Res. Bull. 63, 253 (2015). https://doi.org/10.1016/j.materresbull.2014.12.010
  29. F. Ercolessi, W. Andreoni, E. Tosatti. Phys. Rev. Lett. 66, 7, 911 (1991). https://doi.org/10.1103/physrevlett.66.911
  30. F. Delogu. Phys. Rev. B 72, 1, 205418 (2005). https://doi.org/10.1103/PhysRevB.72.205418
  31. M.N. Magomedov. Tech. Phys. 56, 9, 1277 (2011). https://doi.org/10.1134/S106378421109012X
  32. M.N. Magomedov. Tech. Phys. 59, 5, 675 (2014). https://doi.org/10.1134/S1063784214050211
  33. M.N. Magomedov. Tech. Phys. 61, 5, 730 (2016). https://doi.org/10.1134/S1063784216050157
  34. M.N. Magomedov. J. Surface Investigation. X-ray, Synchrotron Neutron Techn. 13, 5, 880 (2019). https://doi.org/10.1134/S1027451019050070
  35. L.A. Girifalco. Statistical Physics of Materials. J. Wiley and Sons Ltd., N.Y. (1973). 346 p
  36. P.I. Dorogokupets, T.S. Sokolova, B.S. Danilov, K.D. Litasov. Geodynamics \& Tectonophysics 3, 2, 129 (2012)]. https://doi.org/10.5800/GT-2012-3-2-0067
  37. M. Mohr, A. Caron, P. Herbeck-Engel, R. Bennewitz, P. Gluche, K. Bruhne, H.-J. Fecht. J. Appl. Phys. 116, 12, 124308 (2014). https://doi.org/10.1063/1.4896729
  38. A. Rida, E. Rouhaud, A. Makke, M. Micoulaut, B. Mantisi. Phil. Mag. 97, 27, 2387 (2017). https://doi.org/10.1080/14786435.2017.1334136
  39. M. Goyal, B.R.K. Gupta. Mod. Phys. Lett. B 33, 26, 1950310 (2019). https://doi.org/10.1142/s021798491950310x
  40. J. Li, B. Lu, H. Zhou, C. Tian, Y. Xian, G. Hu, R. Xia. Phys. Lett. A 383, 16, 1922 (2019). https://doi.org/10.1016/j.physleta.2018.10.053
  41. C.Q. Sun. Prog. Mater. Sci. 54, 2, 179 (2009). https://doi.org/10.1016/j.pmatsci.2008.08.001
  42. I.F. Golovnev, E.I. Golovneva. Phys. Mesomech. 23, 3, 189 (2020). https://doi.org/10.1134/S1029959920030017
  43. X. Wei, D.J. Shu. Phys. Rev. B 106, 19, 195419 (2022). https://doi.org/10.1103/PhysRevB.106.195419
  44. M. Zhao, Y. Xia. Nature Rev. Mater. 5, 6, 440 (2020). https://doi.org/10.1038/s41578-020-0183-3
  45. M.G. Pamato, I.G. Wood, D.P. Dobson, S.A. Hunt, L. Vov cadlo. J. Appl. Crystallography 51, 2, 470 (2018). https://doi.org/10.1107/S1600576718002248
  46. T. Tsuchiya. J. Geophys. Res. 108, B10, 2462 (2003). https://doi.org/10.1029/2003JB002446
  47. M. Zhu, J. Liu, Q. Huang, J. Dong, X. Yang. J. Phys. D 55, 48, 485303 (2022). https://doi.org/10.1088/1361-6463/ac9485
  48. D. Errandonea. J. Appl. Phys. 108, 3, 033517 (2010). https://doi.org/10.1063/1.3468149
  49. E.N. Ahmedov. Physica B: Condens. Matter 571, 252 (2019). https://doi.org/10.1016/j.physb.2019.07.027
  50. J. Chen, X. Fan, J. Liu, C. Gu, Y. Shi, D.J. Singh, W. Zheng. J. Phys. Chem. C 124, 13, 7414 (2020). https://doi.org/10.1021/acs.jpcc.9b10769
  51. D. Shekhawat, M. Vauth, J. Pezoldt. Inorganics 10, 4, 56 (2022). https://doi.org/10.3390/inorganics10040056
  52. D.M. Foster, T. Pavloudis, J. Kioseoglou, R.E. Palmer. Nature Commun. 10, 1, 2583 (2019). https://doi.org/10.1038/s41467-019-10713-z
  53. C. Zeni, K. Rossi, T. Pavloudis, J. Kioseoglou, S. de Gironcoli, R.E. Palmer, F. Baletto. Nature Commun. 12, 1, 6056 (2021). https://doi.org/10.1038/s41467-021-26199-7
  54. M.N. Magomedov. Phys. Solid State 46, 5, 954 (2004). https://doi.org/10.1134/1.1744976
  55. D. Errandonea. Phys. Rev. B 87, 5, 054108 (2013). https://doi.org/10.1103/PhysRevB.87.054108
  56. N.N. Patel, M. Sunder. High pressure melting curve of platinum up to 35 GPa. AIP Conf. Proc. AIP Publishing LLC 1942, 1, 030007 (2018). https://doi.org/10.1063/1.5028588
  57. S. Anzellini, V. Monteseguro, E. Bandiello, A. Dewaele, L. Burakovsky, D. Errandonea. Sci. Rep. 9, 13034, 1 (2019). https://doi.org/10.1038/s41598-019-49676-y
  58. Z.M. Geballe, N. Holtgrewe, A. Karandikar, E. Greenberg, V.B. Prakapenka, A.F. Goncharov. Phys. Rev. Mater. 5, 3, 033803 (2021). https://doi.org/10.1103/PhysRevMaterials.5.033803
  59. V.M. Samsonov, A.A. Romanov, A.Y. Kartoshkin, I.V. Talyzin, V.V. Puytov. Appl. Phys. A 128, 9, 826 (2022). https://doi.org/10.1007/s00339-022-05922-1
  60. E. Toulkeridou, J. Kioseoglou, P. Grammatikopoulos. Nanoscale Adv. 4, 22, 4819 (2022). https://doi.org/10.1039/d2na00418f
  61. H.M. Strong, R.E. Tuft, R.E. Hanneman. Metallurgical Transact. 4, 2657 (1973). https://doi.org/10.1007/BF02644272
  62. L.J. Swartzendruber. Bull. Alloy Phase Diagrams 3, 2, 161 (1982). https://doi.org/10.1007/BF02892374
  63. Q. Williams, R. Jeanloz, J. Bass, B. Svendsen, T.J. Ahrens. Science 236, 4798, 181 (1987). https://doi.org/10.1126/science.236.4798.181
  64. R. Boehler. Nature 363, 6429, 534 (1993). https://doi.org/10.1038/363534a0
  65. S. Anzellini, A. Dewaele, M. Mezouar, P. Loubeyre, G. Morard. Science 340, 6131, 464 (2013). https://doi.org/10.1126/science.1233514
  66. P.I. Dorogokupets, A.M. Dymshits, K.D. Litasov, T.S. Sokolova. Sci. Rep. 7, 1, 1 (2017). https://doi.org/10.1038/srep41863
  67. I.C. Ezenwa, Y. Fei. Geophys. Res. Lett. 50, 6, e2022GL102006 (2023). https://doi.org/10.1029/2022GL102006
  68. M.N. Magomedov. Phys. Solid State 63, 2, 215 (2021). https://doi.org/10.1134/S1063783421020165
  69. M.N. Magomedov. J. Phys. Chem. Solids 151, 109905 (2021). https://doi.org/10.1016/j.jpcs.2020.109905
  70. M.N. Magomedov. Phys. Solid State 64, 13, 2121 (2022). https://doi.org/10.21883/PSS.2022.13.52307.145
  71. M.N. Magomedov. ZhTF 93, 2, 221 (2023). (in Russian). https://doi.org/10.21883/JTF.2023.02.54496.190-22. [M.N. Magomedov. Tech. Phys. 68, 2, 209 (2023). https://doi.org/10.21883/TP.2023.02.55474.190-22]
  72. T.D. Cuong, A.D. Phan. Vacuum 185, 110001 (2021). https://doi.org/10.1016/j.vacuum.2020.110001
  73. T.D. Cuong, N.Q. Hoc, N.D. Trung, N.T. Thao, A.D. Phan. Phys. Rev. B 106, 9, 094103 (2022). https://doi.org/10.1103/PhysRevB.106.094103
  74. W.H. Qi, M.P. Wang. Mater. Lett. 59, 18, 2262 (2005). https://doi.org/10.1016/j.matlet.2004.06.079
  75. M.A. Jabbareh. Solid State Commun. 355, 114923 (2022). https://doi.org/10.1016/j.ssc.2022.114923.
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru