Physics of the Solid State
Volumes and Issues
Low-temperature dielectric and magnetic properties of composite brass nanoparticles obtained at an electron accelerator by electron beam evaporation from a two-zone crucible
Smolyakov D. A. 1, Eremin E. V. 1,2, Molokeev M. S.1, Zobov K.V. 3, Volochaev M. N. 1, Tarasov A. S. 1
1Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian State University of Science and Technology, Krasnoyarsk, Russia
3Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: sda88@iph.krasn.ru

PDF
In this paper presents the results of a study of Cu/Zn composite brass nanoparticles obtained from a two-zone crucible using an electron accelerator for target irradiation. Characterization was carried out, the chemical and phase composition of the manufactured samples was determined using transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction analysis. The dielectric properties of the nanopowder have been studied. Features of the relaxation type were discovered. The energy of the activation process is estimated. The magnetic properties of the sample demonstrate a paramagnetic character, which was expected due to the composition of the nanopowder. However, against the background of the paramagnetic contribution, there is a ferromagnetic phase, which is clearly visible at low temperatures and practically disappears at room temperature. This indicates that some part of the composite nanoparticles have long-range magnetic order at low temperatures. Keywords: Nanoparticles, nanopowders, composite, electron accelerator, dielectric properties, paramagnets.
  1. A.M. Ealias, M.P. Saravanakumar. IOP Conf. Ser.: Mater. Sci. Eng. 263, 1 (2017)
  2. D.A. Patino-Ruiz, S.I. Meramo-Hurtado, A.D. Gonzalez-Delgado, A. Herrera. ACS Omega 6, 19, 12410 (2021)
  3. K.Ch. Sekhar, R. Surakasi, P. Roy, P.J. Rosy, T.K. Sreeja, S. Raja, V.L. Chowdary. Int. J. Chem. Eng. 2022, 1 (2022)
  4. S.A. Predoi, S.C. Ciobanu, M.C. Chifiriuc, M.M. Heino, D. Predoi, S.L. Iconaru. Materials 16, 1, 229 (2023)
  5. U. Asim, N. Shahid, R. Naveed. NANO: Brief Rep. Rev. 7, 5, 1 (2012)
  6. P. Luzeau, Z. Xu, M. Lagues, N. Hess, J.P. Coutor, M. Nanto, F. Queyroux, M. Touzeau, D. Pagnon. J. Vac. Sci. Technol. A 8, 6, 3938 (1990)
  7. K. Nakaoka, J. Ueyama, K. Ogura. J. Electrochem. Soc. 151, 10, 661 (2004)
  8. T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, A. Ramirez. Nature Mater. 7, 291 (2008)
  9. T.I. Arbuzova, S.V. Naumov, A.A. Samokhvalov, B.A. Gizhevsky, V.L. Arbuzov, K.V. Shalnov. FTT 43, 5, 846 (2001). (in Russian)
  10. S.S.A. Karim, C.F. Dee, B.Y. Majlis, M.A. Mohamed. Sains Malays 48, 6, 1301 (2019)
  11. D. Lee, W.K. Bae, I. Park, D.Y. Yoon, S. Lee, C. Lee. Solar Energy Mater. Solar Cells 95, 1, 365 (2011)
  12. J. Huang, Y. Wu, C. Gu, M. Zhai, K. Yu, M. Yang, J. Liu. Sens. Actuators B 146, 1, 206 (2010)
  13. A.S. Lozhkomoev, O.V. Bakina, A.V. Pervikov, S.O. Kazantsev, E.A. Glazkova. J. Mater. Sci.: Mater. Electron 30, 14, 13209 (2019)
  14. M. Sabbouh, A. Nikitina, E. Rogacheva, L. Kraeva, S. Ulasevich, E. Skorb, M. Nosonovsky. Ultrason. Sonochem. 80, 2073, 105817 (2021)
  15. E.Ch. Khartaeva, A.V. Nomoev, K.V. Zobov, D.Yu. Trufanov, B.R. Gaponenko, S.P. Bardakhanov. Tr. VII mezhdunar. Kreindelevskogo seminara (2023). S. 189. (in Russian)
  16. Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. --- User's Manual. Bruker AXS, Karlsruhe, Germany (2008)
  17. N.V. Volkov, A.S. Tarasov, D.A. Smolyakov, S.N. Varnakov, S.G. Ovchinnikov. J. Magn. Magn. Mater. 383, 69 (2015)
  18. D.A. Smolyakov, A.S. Tarasov, I.A. Yakovlev, M.N. Volochaev. Semiconductors. 53, 14, 1964 (2019)
  19. D.A. Smolyakov, A.S. Tarasov, M.A. Bondarev, A.A. Nikolskaya, V.K. Vasiliev, M.N. Volochaev, N.V. Volkov. Mater. Sci. Semicond. Proc. 126, 1 (2021)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru