Physics of the Solid State
Volumes and Issues
Luminescence properties of Yb1-xScxPO4 solid solutions
Spassky D. A. 1,2, Nikiforov I. V. 3, Vasil'ev A. N. 1
1Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
2Institute of Physics, University of Tartu, Tartu, Estonia
3Lomonosov Moscow State University, Moscow, Russia
Email: spas@srd.sinp.msu.ru, anv@sinp.msu.ru

PDF
Luminescence properties of Yb1-xScxPO4 solid solutions obtained by solid-state reaction were studied. According to the data of XRD analysis the synthesized solid solutions are single phase; the change of crystal lattice parameters is described by Vegard's law. The origin of emission centers was determined under the excitation in UV and VUV spectral regions. It was shown that all solid solutions are characterized by the emission in UV region related to the charge transfer luminescence (x#1) or radiative relaxation of excitons (x=1). The increased efficiency of energy transfer to the emission centers was shown for solid solutions and attributed to the separation length constrain of the non-thermalized electrons and holes. This effect results in the UV luminescence enhancement in Yb1-xScxPO4 solid solutions and may be of applied interest for the creation of new phosphors with intense luminescence in the UV range. Keywords: energy transfer, UV-luminescence, charge transfer luminescence, solid solutions, ScPO4, YbPO4.
  1. D. Welch, M. Buonanno, V. Grilj, I. Shuryak, C. Crickmore, A.W. Bigelow, G. Randers-Pehrson, G.W. Johnson, David J. Brenner. Sci. Rep. 8, 2752 (2018). https://doi.org/10.1038/s41598-018-21058-w
  2. Xianli Wang, Yafei Chen, Feng Liu, Zhengwei Pan. Nature Commun. 11, 2040 (2020). https://doi.org/10.1038/s41467-020-16015-z
  3. Y. Zhou, D.D. Jia, L.A. Lewis, S.P. Feofilov, R.S. Meltzer. Nucl. Instrum. Meth. A 633, 31 (2011). https://doi.org/10.1016/j.nima.2010.12.238
  4. B. Caillier, J. Caiut, C. Muja, J. Demoucron, R. Mauricot, J. Dexpert-Ghys, Ph. Guillot. Photochem. Photobiol. 91, 526 (2015). https://doi.org/10.1111/php.12426
  5. H. Kitagawa, T. Nomura, T. Nazmul, K. Omori, N. Shigemoto, T. Sakaguchi, H. Ohge. Am. J. Infect. Control 49, 299 (2021). https://doi.org/10.1016/j.ajic.2020.08.022
  6. S. Miwa, S. Yano, Y. Hiroshima, Y. Tome, F. Uehara, S. Mii, E.V. Efimova, H. Kimura, K. Hayashi, H. Tsuchiya, R.M. Hoffman. J. Cell. Biochem. 114, 2493 (2013). https://doi.org/10.1002/jcb.24599
  7. Puxian Xiong, Mingying Peng. Opt. Mater. X 2, 100022 (2019). https://doi.org/10.1016/j.omx.2019.100022
  8. G.V. Belessiotis, P.P. Falara, I. Ibrahim, A.G. Kontos. Materials 15, 4629 (2022). https://doi.org/10.3390/ma15134629
  9. M. Broxtermann, L.M. Funke, J.-N. Keil, H. Eckert, M.R. Hansen, A. Meijerink, T. Yu, N. Braun, Th. Justel. J. Lumin. 202, 450 (2018). https://doi.org/10.1016/j.jlumin.2018.05.056
  10. M. Ferhi, K. Horchani-Naifer, S. Hraiech, M. Ferid, Y. Guyot, G. Boulon. Rad. Meas. 46, 1033 (2011). http://dx.doi.org/10.1016/j.radmeas.2011.06.062
  11. J.M.A. Caiut, S. Lechevallier, J. Dexpert-Ghys, B. Caillier, Ph. Guillot. J. Lumin. 131, 628 (2011). https://doi.org/10.1016/j.jlumin.2010.11.004
  12. J. Kappelhoff, J.-N. Keil, M. Kirm, V.N. Makhov, K. Chernenko, S. Moller, Th. Justel. Chem. Phys. 562, 111646 (2022). https://doi.org/10.1016/j.chemphys.2022.111646
  13. L.A. Boatner. Rev. Mineral. Geochem. 48, 87 (2002). https://doi.org/10.2138/rmg.2002.48.4
  14. M. Ridley, B. McFarland, C. Miller, E. Opila. Materialia 21, 101289 (2022). https://doi.org/10.1016/j.mtla.2021.101289
  15. A.E. Grechanovsky, N.N. Eremin, V.S. Urusov. FTT 55, 1813 (2013). (in Russian)
  16. A.G. Herandez, D. Boyer, A. Potdevin, G. Chadeyron, A. G. Murillo, F. de J.C. Romo, R. Mahiou. Opt. Mater. 73, 350 (2017). https://doi.org/10.1016/j.optmat.2017.08.034
  17. V.S. Levushkina, D.A. Spassky, E.M. Aleksanyan, M.G. Brik, M.S. Tretyakova, B.I. Zadneprovski, A.N. Belsky. J. Lumin. 171, 33 (2016). https://doi.org/10.1016/j.jlumin.2015.10.074
  18. D. Spassky, A.N. Vasil'ev, V. Nagirnyi, I. Kudryavtseva, D. Deyneko, I. Nikiforov, I. Kondratyev, B. Zadneprovski. Materials 15, 6844 (2022). https://doi.org/10.3390/ma15196844
  19. V.S. Voznyak-Levushkina, A.A. Arapova, D.A. Spassky, I.V. Nikiforov, B.I. Zadneprovsky. FTT 64, 12, 1925 (2022). (in Russian). https://doi.org/10.21883/FTT.2022.12.53644.449
  20. T. Lyu, P. Dorenbos. J. Mater. Chem. C 6, 369 (2018). https://doi.org/10.1039/c7tc05221a
  21. Congting Sun, Dongfeng Xue. Dalton Trans. 46, 7888 (2017). https://doi.org/10.1039/c7dt01375b
  22. A. Belsky, A. Gektin, A.N. Vasil'ev. Phys. Status Solidi B 257, 1900535 (2020). http://dx.doi.org/10.1002/pssb.201900535
  23. R. Kirkin, V.V. Mikhailin, A.N. Vasil'ev. IEEE T. Nucl. Sci. 59, 5, 2057 (2012). http://dx.doi.org/10.1109/TNS.2012.2194306
  24. A. Trukhin, L.A. Boatner. Mater. Sci. Forum. Trans. Tech. Publications Aedermannsdorf, Switzerland. 239, 573 (1997)
  25. E. Nakazawa. Chem. Phys. Lett. 56, 161 (1978). https://doi.org/10.1016/0009-2614(78)80210-3
  26. L. van Pieterson, M. Heeroma, E. de Heer, A. Meijerink. J. Lumin. 91, 177 (2000). https://doi.org/10.1016/S0022-2313(00)00214-3
  27. M. Nikl, A. Yoshikawa, T. Fukuda. Opt. Mater. 26, 545 (2004). http://dx.doi.org/10.1016/j.optmat.2004.05.002
  28. D. Krasikov, A. Scherbinin, A. Vasil'ev, I. Kamenskikh, V. Mikhailin. J. Lumin. 128, 1748 (2008). http://doi.org/10.1016/j.jlumin.2008.04.001
  29. A. Fukabori, V. Chani, K. Kamada, A. Yoshikawa. J. Cryst. Growth 352, 124 (2012). http://dx.doi.org/10.1016/j.jcrysgro.2012.01.027
  30. M. Nikl, N. Solovieva, J. Pejchal, J.B. Shim, A. Yoshikawa, T. Fukuda, A. Vedda, M. Martini, D.H. Yoon. Appl. Phys. Lett. 84, 882 (2004). http://dx.doi.org/10.1063/1.1645987
  31. R. Shannon. Acta Cryst. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551
  32. L. Vegard. Z. Fur. Phys. 5, 17, 17 (1921). https://doi.org/10.1007/BF01349680
  33. P. Dorenbos. J. Phys.: Condens. Matter. 25, 225501 (2013). https://doi.org/10.1088/0953-8984/25/22/225501
  34. P. Dorenbos. Opt. Mater. 69, 8 (2017). https://doi.org/10.1016/j.optmat. 2017.03.061
  35. O. Voloshyna, O. Sidletskiy, D. Spassky, Ia. Gerasymov, I. Romet, A. Belsky. Opt. Mater. 76, 382 (2018). https://doi.org/10.1016/j.optmat.2018.01.003
  36. O. Sidletskiy, A. Gektin, A. Belsky. Phys. Status Solidi A 211, 2384 (2014). https://doi.org/10.1002/pssa.201431137
  37. D. Spassky, S. Omelkov, H. Magi, V. Mikhailin, A. Vasil'ev, N. Krutyak, I. Tupitsyna, A. Dubovik, A. Yakubovskaya, A. Belsky. Opt. Mater. 36, 1660 (2014). https://doi.org/10.1016/j.optmat.2013.12.039
  38. A.V. Gektin, A.N. Belsky, A.N. Vasil'ev. IEEE Trans. Nucl. Sci. 61, 262 (2013). https://doi.org/10.1109/TNS.2013.2277883
  39. D. Spassky, A. Vasil'ev, S. Vielhauer, O. Sidletskiy, O. Voloshyna, A. Belsky. Opt. Mater. 80, 247 (2018). https://doi.org/10.1016/j.optmat.2018.05.019
  40. Z. Khadraoui, K. Horchani-Naifer, M. Ferhi, M. Ferid. Chem. Phys. 457, 37 (2015). http://dx.doi.org/10.1016/j.chemphys.2015.05.014
  41. F. Kang, G. Sun, P. Boutinaud, F. Gao, Z. Wang, J. Lu, S. Xiao. J. Mater. Chem. C 7, 32, 9865 (2019). https://doi.org/10.1039/c9tc01385g
  42. L. Han, Ch. Guo, Zh. Ci, Ch. Wang, Yu. Wang, Y. Huang. Chem. Eng. J. 312, 204 (2017). http://dx.doi.org/10.1016/j.cej.2016.11.136
  43. D.J. Singh, G.E. Jellison, Jr., L.A. Boatner. Phys. Rev. B 74, 155126 (2006). http://dx.doi.org/10.1103/PhysRevB.74.155126
  44. A.N. Trukhin, L.A. Boatner. In: Proceeding of the 5th Int. Conf. on Inorganic Scintillators and their Applications / Ed. V. Mikhailin. University of Moscow, Russia, M. (2000). P. 697-702
  45. G. Stryganyuk, S. Zazubovich, A. Voloshinovskii, M. Pidzyrailo, G. Zimmerer, R. Peters, K. Petermann. J. Phys.: Condens. Matter 19, 036202 (2007). http://dx.doi.org/10.1088/0953-8984/19/3/036202
  46. N.V. Guerassimova, I.A. Kamenskikh, V.V. Mikhailin, I.N. Shpinkov, D.A. Spassky, E.E. Lomonova, M.A. Borik, N.I. Markov, V.A. Panov, M.A. Veshnyakova, M. Kirm, G. Zimmerer. Nucl. Instrum. Meth. A 486, 1-2, 234 (2002). http://dx.doi.org/10.1016/S0168-9002(02)00708-8
  47. I.A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, D. Spassky. Opt. Mater. 24, 267 (2003). http://dx.doi.org/10.1016/S0925-3467(03)00133-2

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru