The influence of surface charge on the ionic conductivity of the electrolyte in a nanochannel
Zhukov M.V. 1, Gorbenko O.M.1, Lukashenko S.Yu.1, Sapozhnikov I. D.1, Felshtyn M.L.1, Pichakhchi S.V.1, Golubok A.O.1
1Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
Email: cloudjyk@yandex.ru

PDF
The flow of ion current in a nanochannel formed by a glass nanopipette close to a flat polymer surface at distances commensurate with or less than the diameter of its aperture (~100 nm) was studied. The gap between the pipette and the plane was controlled using the feedback loop of a scanning ion conductance microscope. An increase in ionic conductivity was detected as the nanopipette approached the surface. The axially symmetric pipette-plane system was considered as an adaptive T-shaped nanochannel. The dependence of the T-channel conductivity on the aperture size, temperature, and ion concentration was studied. It has been shown that the effect of increasing conductivity is due to the surface charge. Keywords: nanopipette, scanning ion conductance microscope, nanochannel, peak effect, surface charge.
  1. X. Ou, P. Chen, X. Huang, S. Li, B.F. Liu. J. Separation Sci. 43, 1, 258 (2020). DOI: 10.1002/jssc.201900758
  2. L. Chen, C. Yang, Y. Xiao, X. Yan, L. Hu, M. Eggersdorfer, D. Chen, D. A. Weitz, F. Ye. Mater. Today Nano 16, 100136 (2021). DOI: 10.1016/j.mtnano.2021.100136
  3. J. Zhang, W. Liu, J. Dai, K. Xiao. Adv. Sci. 9, 23, 2200534 (2022). DOI: 10.1002/advs.202200534
  4. P. Cadinu, G. Campolo, S. Pud, W. Yang, J.B. Edel, C. Dekker, A.P. Ivanov. Nano Lett. 18, 4, 2738 (2018). DOI: 10.1021/acs.nanolett.8b00860
  5. G. F. Schneider, C. Dekker. Nature Biotechnology 30, 4, 326 (2012). DOI: 10.1038/nbt.2181
  6. E. Neher, B. Sakmann. Sci. Am. 266, 3, 44 (1992). DOI: 10.1038/scientificamerican0392-44
  7. P.K. Hansma, B. Drake, O. Marti, S.A.C. Gould, C.B. Prater. Science 243, 4891, 641 (1989). DOI: 10.1126/science.2464851
  8. K.T. Rodolfa, A. Bruckbauer, D. Zhou, Y.E. Korchev, D. Klenerman. Angewandte Chem. 117, 42, 7014 (2005). DOI: 10.1002/ange.200502338
  9. M.V. Zhukov, S.Yu. Lukashenko, I.D. Sapozhnikov, M.L. Felshtyn, O.M. Gorbenko, A.O. Golubok. J. Phys.: Conf. Ser. 2086, 012074 (2021). DOI: 10.1088/1742-6596/2086/1/012074
  10. S.Y. Lukashenko, O.M. Gorbenko, M.V. Zhukov, V. Pichahchi I.D. Sapozhnikov M.L. Felshtyn A.O. Golubok. J. Surf. Investig. 17, 585 (2023). DOI: https://doi.org/10.1134/S1027451023030096
  11. G. Trefalt, S. H.Behrens, M. Borkovec. Langmuir 32, 380 (2016). DOI: 10.1021/acs.langmuir.5b03611
  12. L. Zhang, P.M. Biesheuvel, I.I. Ryzhkov. Phys.Rev. Appl. 12, 014039 (2019) DOI: 10.1103/PhysRevApplied.12.014039

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru