Unidirectional and frequency-selective propagation of spin waves in thin-film double-layer YIG microwaves and spin-wave diodes based on them
Aleksandrova Yu. V. 1, Beginin E. N. 1, Sadovnikov A. V. 1,2
1Saratov State University, Saratov, Russia
2Far Eastern Federal University, Vladivostok, Russia
Email: jvaleksandrova@gmail.com, egbegin@gmail.com, SadovnikovAV@gmail.com

PDF
The modes of unidirectional propagation of spin waves (SW) in a tangentially magnetized and transversely confined microwave formed from two layers of yttrium-iron garnet (YIG) with different magnitudes of saturation magnetizations inside each layer are demonstrated. The micromagnetic modeling method based on the numerical solution of the Landau-Lifshitz-Gilbert equation was used to study the modes of propagation of the SW when dissipation in the structure is taken into account. On the basis of the construction of transmission spectra and dispersion characteristics of SW, a two-frequency unidirectional mode of SW propagation is investigated; the accompanying effect is a significant manifestation of the properties of nonreciprocity of surface SW. For inverse bulk SW, hybridization of high-frequency and low-frequency modes is found, manifesting itself in the dispersion characteristics mellowing. The unidirectional nonreciprocal mode of multimode propagation of SW in bilayer microwaves of finite width can be used to realize spintronics and magnonics devices, e. g., spin diodes and functional multiband interconnect elements in integrated topologies of magnon networks. Keywords: magnonics, multilayer magnetic films, spin waves, dispersive characteristics, micromagnetic modeling, microwave, nonreciprocity.
  1. S.A. Nikitov, D.V. Kalyabin, I.V. Lisenkov, A.N. Slavin, Yu.N. Barabanenkov, S.A. Osokin, A.V. Sadovnikov, E.N. Beginin, M.A. Morozova, Yu.P. Sharaevsky, Yu.A. Filimonov, Yu.V. Khivintsev, S.L. Vysotsky, V.K. Sakharov, E.S. Pavlov. UFN 185, 10, 1099 (2015); [Phys. Usp. 58, 10, 1002 (2015)]
  2. S.A. Nikitov, A.R. Safin, D.V. Kalyabin, A.V. Sadovnikov, E.N. Beginin, M.V. Logunov, M.A. Morozova, S.A. Odintsov, S.A. Osokin, A.Yu. Sharaevskaya, Yu. P. Sharaevsky, A.I. Kirilyuk, UFN 190, 10, 1009 (2020) (in Russian); [Phys. Usp., 63, 10, 945 (2020)]
  3. G. Gubbiotti, A. Sadovnikov, E. Beginin, S. Sheshukova, S. Nikitov, G. Talmelli, I. Asselberghs, I.P. Radu, C. Adelmann, F. Ciubotaru. Phys. Rev. Appl. 15, 014061 (2021)
  4. A.A. Grachev, A.V. Sadovnikov, S.A. Nikitov. Nanomaterials 12, 9, 1520 (2022), https://doi.org/10.3390/nano12091520
  5. A. Khitun, M. Bao, K.L. Wang. IEEE Trans. Magn. 44, 2141 (2008).
  6. A.V. Chumak, P. Kabos, M. Wu, C. Abert, C. Adelmann, A.O. Adeyeye, J. Akerman, F.G. Aliev, A. Anane, A. Awad, C.H. Back, A. Barman, G.E.W. Bauer, M. Becherer, E.N. Beginin, V.A.S.V. Bittencourt, Y.M. Blanter, P. Bortolotti, I. Boventer, D.A. Bozhko, S.A. Bunyaev, J.J. Carmiggelt, R.R. Cheenikundil, F. Ciubotaru, S. Cotofana, G. Csaba, O.V. Dobrovolskiy, C. Dubs, M. Elyasi, K.G. Fripp, H. Fulara, I.A. Golovchanskiy, C. Gonzalez-Ballestero, P. Graczyk, D. Grundler, P. Gruszecki, G. Gubbiotti, K. Guslienko, A. Haldar, S. Hamdioui, R. Hertel, B. Hillebrands, T. Hioki, A. Houshang, C.M. Hu, H. Huebl, M. Huth, E. Iacocca, M.B. Jungfleisch, G.N. Kakazei, A. Khitun, R. Khymyn, T. Kikkawa, M. Klaui, O. Klein, J.W. Klos, S. Knauer, S. Koraltan, M. Kostylev, M. Krawczyk, I.N. Krivorotov, V.V. Kruglyak, D. Lachance-Quirion, S. Ladak, R. Lebrun, Y. Li, M. Lindner, R. MacEdo, S. Mayr, G.A. Melkov, S. Mieszczak, Y. Nakamura, H.T. Nembach, A.A. Nikitin, S.A. Nikitov, V. Novosad, J.A. Otalora, Y. Otani, A. Papp, B. Pigeau, P. Pirro, W. Porod, F. Porrati, H. Qin, B. Rana, T. Reimann, F. Riente, O. Romero-Isart, A. Ross, A.V. Sadovnikov, A.R. Safin, E. Saitoh, G. Schmidt, H. Schultheiss, K. Schultheiss, A.A. Serga, S. Sharma, J.M. Shaw, D. Suess, O. Surzhenko, K. Szulc, T. Taniguchi, M. Urbanek, K. Usami, A.B. Ustinov, T. Van Der Sar, S. Van Dijken, V.I. Vasyuchka, R. Verba, S. Viola Kusminskiy, Q. Wang, M. Weides, M. Weiler, S. Wintz, S.P. Wolski, X. Zhang. IEEE Transact. Magn. 58, 6, 0800172 (2022); https://doi.org/10.1109/TMAG.2022.3149664
  7. S. Demokritov, A. Slavin. Topics in Applied Physics 125. Springer Berlin Heidelberg (2012)
  8. V.V. Kruglyak, S.O. Demokritov, D. Grundler. J. Phys. D 43, 264001 (2010)
  9. T. Schneider, A. Serga, B. Hillebrands, M. Kostylev. J. anoelectron. Optoelectron. 3, 1, 69 (2008). https://doi.org/10.1166/jno.2008.010
  10. T. Schneider, A. Serga, B. Leven, B. Hillebrands, R. Stamps, M. Kostylev. Appl. Phys. Lett. 92, 2, 5 (2008). https://doi.org/10.1063/1.2834714
  11. I. Dzyaloshinsky. J. Phys. Chem. Solids 4, 4, 241 (1958)
  12. A. Khitun. J. Appl. Phys. 111, 5, (2012)
  13. A.R. Safin, S.A. Nikitov, A.I. Kirilyuk, D.V. Kalyabin, A.V. Sadovnikov, P.A. Stremoukhov, M.V. Logunov, P.A. Popov. JETP 131, 1, 71 (2020)
  14. K. Zakeri. Physica C 549, 164 (2018)
  15. Y. Zhang, T.-H. Chuang, K. Zakeri, J. Kirschner. Phys. Rev. Lett. 109, 087203 (2012); 10.1103/PhysRevLett.109.087203
  16. B. Hillebrands, K. Ounadjela. Top. Appl. Phys. 87, (2003)
  17. T.W. O'Keeffe, R.W. Patterson. J. Appl. Phys. 49, 4886 (1978)
  18. S.N. Bajpai. J. Appl. Phys. 58, 910 (1985)
  19. A. Vansteenkiste, J. Leliaert, M. Dvornik, F. Garci a-Sanchez, B. Waeyenberge. AIP Adv. 4, 10, 1 (2014)
  20. S.A. Odintsov, S.E. Sheshukova, S.A. Nikitov, E.H. Lock, E.N. Beginin, A.V. Sadovnikov. J. Magn. Magn. Mater. 546, 168736 (2021)
  21. M. Jamali, J.H. Kwon, S.-M. Seo, K.-J. Lee, H. Yang. Sci. Rep. 3, 1, 3160 (2013)
  22. R.A. Gallardo, T. Schneider, A.K. Chaurasiya, A. Oelschla gel, S.S.P.K. Arekapudi, A. Rolda n-Molina, R. Hu bner, K. Lenz, A. Barman, J. Fassbender, J. Lindner, O. Hellwig, P. Landeros. Phys. Rev. Appl. 12, 034012 (2019)
  23. V.D. Poimanov, V.V. Krugkyak, Pisma v ZhTF 161, 5, 720 (2022) (in Russian)
  24. A.V. Chumak, A.A. Serga, B. Hillebrands. Nature Commun. 5, 1 (2014)
  25. Yu.A. Filimonov, I.V. Shein, ZhTF 62, 1, 187 (1992) (in Russian)
  26. V. Cherepanov, I. Kolokolov, V. L'vov. Phys. Rep., 229, 3, 81 (1993)
  27. M. Grassi, M. Geilen, D. Louis, M. Mohseni, T. Bracher, M. Hehn, D. Stoeffler, M. Bailleul, P. Pirro, and Y. Henry. Phys. Rev. Appl. Am. Phys. Soc. 14, 2, 1 (2020)
  28. B.A. Kalinikos, A.N. Slavin. J. Phys. C 19, 7013 (1986)
  29. R.W. Damon, J.R. Eshbach. J. Phys. Chem. Solids 19, 3-4, 308 (1961); 10.1016/0022-3697(61)90041-5
  30. D. Stancil, A. Prabhakar. Spin Waves: Theory and Applications. Springer, N.Y. (2009). 346 p
  31. J. Lan, W. Yu, R. Wu, J. Xiao. Phys. Rev. X 5, 4, 041049 (2015).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru