Emission linewidth and α-factor of 1.55 μm-range vertical-cavity surface-emitting lasers based on InGaAs/InGaAlAs quantum wells
Blokhin S. A. 1, Kovach J. N. 1,2, Bobrov M.A. 1, Blokhin A. A. 1, Maleev N.A. 1, Kuzmenkov A. G. 1, Babichev A. V. 2, Novikov I. I. 2, Karachinsky L. Ya. 2, Kolodeznyi E. S. 2, Voropaev K. O. 3, Kulikov A.V.2, Egorov А. Yu. 4, Ustinov V. M. 1
1Ioffe Institute, St. Petersburg, Russia
2ITMO University, St. Petersburg, Russia
3OAO OKB-Planeta, Veliky Novgorod, Russia
4Connector Optics LLC, St. Petersburg, Russia
Email: blokh@mail.ioffe.ru, j-n-kovach@mail.ioffe.ru, bobrov.mikh@gmail.com, aleksey.blokhin@mail.ioffe.ru, Maleev@beam.ioffe.ru, kuzmenkov@mail.ioffe.ru, andrey.babichev@connector-optics.com, Innokenty.Novikov@connector-optics.com, leonid.karachinsky@connector-optics.com, evgenii_kolodeznyi@corp.ifmo.ru, voropaevko@okbplaneta.ru, avkulikov@itmo.ru, anton@beam.ioffe.ru, vmust@beam.ioffe.ru

PDF
The emission linewidth of single-mode vertical-cavity surface-emitting lasers with an active region based on strained InGaAs/InGaAlAs quantum wells in the spectral range of 1.55 μm was studied. The removal of degeneracy in polarization of the fundamental mode (splitting of the resonance wavelength) and polarization switching (type I) associated with the transition from lasing via the short-wavelength mode to lasing via the long-wavelength one were observed. As the output optical power increased, the emission linewidth dropped to ~ 30 MHz for both orthogonally polarized modes and was limited by the residual linewidth. The value of the α-factor was estimated: for the short-wavelength mode it reached 5, while for the long-wavelength mode it increased to ~ 9. At an output optical power of more than 1 mW, the emission line broadening is observed, which can be associated with a gain saturation and the increased α-factor caused by a strong self-heating of the investigated laser. Keywords: VCSEL, polarization, linewidth, α-factor.
  1. A. Babichev, S. Blokhin, A. Gladyshev et al. IEEE Photonics Technol. Lett., 35 (6), 297 (2023). DOI: 10.1109/LPT.2023.3241001
  2. S.A. Blokhin, A.V. Babichev, A.G. Gladyshev et al. IEEE J. Quant. Electron., 58 (2), 2400115 (2022). DOI: 10.1109/jqe.2022.3141418
  3. M. Gebski, D. Dontsova, N. Haghighi et. al. OSA Continuum, 3 (7), 1952 (2020). DOI: 10.1364/osac.396242
  4. B.D. Padullaparthi, J. Tatum, K. Iga, VCSEL Industry: Communication and Sensing, The ComSoc Guides to Communications Technologie (Wiley-IEEE Press, Piscataway, NJ., USA, 2022). ISBN: 9781119782216
  5. Z. Ruan, Y. Zhu, P. Chen et al. J. Lightwave Technol., 38, 5100 (2020). DOI: 10.1109/jlt.2020.2999526
  6. L. Zhang, J. Van Kerrebrouck, R. Lin et al. J. Lightwave Technol., 37 (2), 380 (2019). DOI: 10.1109/JLT.2018.2851746
  7. A. Babichev, S. Blokhin, E. Kolodeznyi et al. Photonics, 10 (3), 268 (2023). DOI: 10.3390/photonics10030268
  8. S. Spiga, W. Soenen, A. Andrejew et al. J. Lightwave Technol., 35 (4), 727 (2017). DOI: 10.1109/JLT.2016.2597870
  9. S. Spiga, D. Schoke, A. Andrejew et al. J. Lightwave Technol., 35 (15), 3130 (2017). DOI: 10.1109/jlt.2017.2660444
  10. D. Ellafi, V. Iakovlev, A. Sirbu et al. Opt. Express, 22 (26), 32180 (2014). DOI: 10.1364/OE.22.032180
  11. A. Sirbu, G. Suruceanu, V. Iakovlev et al. IEEE Phot. Technol. Lett., 25 (16), 1555 (2013). DOI: 10.1109/LPT.2013.2271041
  12. A. Bacou, A. Rissons, J.-C. Mollier. Proc. SPIE, 6908, 69080F (2008). DOI: 10.1117/12.763054
  13. R. Shau, H. Halbritter, F. Riemenschneider et al. Electron. Lett., 39 (24), 1728 (2003). DOI: 10.1049/el:20031143
  14. N.A. Khan, K. Schires, A. Hurtado et al. IEEE J. Quantum Electron., 49 (11), 990 (2013). DOI: 10.1109/jqe.2013.2282759
  15. M. Ortsiefer, R. Shau, G. Bohm et al. Appl. Phys. Lett., 76 (16), 2179 (2000). DOI: 10.1063/1.126290
  16. S.A. Blokhin, M.A. Bobrov, A.A. Blokhin et al. Tech. Phys. Lett., 48 (14), 46 (2022). DOI: 10.21883/TPL.2022.14.55117.18942
  17. S.A. Blokhin, A.V. Babichev, L.Ya. Karachinsky et al., Kvant. elektron., 52 (10), 878 (2022) (in Russian)
  18. S.A. Blokhin, A.V. Babichev, L.Ya. Karachinsky et al. J. Opt. Technol., 89 (11), 681 (2022). DOI: 10.1364/JOT.89.000681
  19. S.A. Blokhin, M.A. Bobrov, N.A. Maleev et al. Appl. Phys. Lett., 105 (6), 061104 (2014). DOI: 10.1063/1.4892885
  20. N. Volet, V. Iakovlev, A. Sirbu et al. Proc. SPIE, 8432, 84320B (2012). DOI: 10.1117/12.922075
  21. L. Yu, Y.H. Chen, C.Y. Jiang et al. J. Appl. Phys., 111 (4), 043109 (2012). DOI: 10.1063/1.3682648
  22. L.A. Coldren, S.W. Corzine, M.L. Masanovic. Diode Lasers and Photonic Integrated Circuits (John Wiley \& Sons, Hoboken, NJ., USA, 2012). ISBN: 9780470484128
  23. N.M. Margalit, J. Piprek, S. Zhang et al. IEEE J. Sel. Top. Quant. Electron., 3 (2), 359 (1997). DOI: 10.1109/2944.605679
  24. N.A. Khan, T. Mahmood. J. Mod. Opt., 67 (16), 1334 (2020). DOI: 10.1080/09500340.2020.1845406
  25. H. Halbritter, R. Shau, F. Riemenschneider et al. Electron. Lett., 40 (20), 1266 (2004). DOI: 10.1049/el:20040173
  26. D. Burak, J.V. Moloney, R. Binder. IEEE J. Quant. Electron., 36 (8), 956 (2000). DOI: 10.1109/3.853556
  27. G. Van der Sande, J. Danckaert, I. Veretennicoff et al. Phys. Rev. A, 71 (6), 063801 (2005). DOI: 10.1103/PhysRevA.71.063801

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru