Investigation of the Optical Properties of Aminated Carbon Dots Based on Citric Acid and Ethylenediamine
Margaryan I. V.1, Mitroshin A. M.1,2, Dubavik A. Yu.1, Kundelev E. V. 1
1International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
2Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
Email: igormargaryan@niuitmo.ru, almitroshin51@gmail.com, kundelev.evg@Gmail.com

PDF
The most important parameter determining the efficiency of carbon dots as light absorbers in photocatalytic systems is the strength of their binding to the catalyst. It is rather difficult to estimate the contribution of this parameter of carbon dots to the overall efficiency of the photocatalytic system, since the post-synthetic modification of the surface of carbon dots is accompanied by a significant change in their optical and structural properties. In this work, we performed post-synthetic modification of the surface of carbon dots based on citric acid by amination with ethylenediamine molecules by activating the carboxyl groups of carbon dots with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide molecules. The use of this amination approach made it possible to change the charge of carbon dots without changing their main optical and structural properties, which can be further used to assess the contribution of the strength of their binding with Dubois-type molecular catalysts to the overall efficiency of the photocatalytic system. Keywords: Carbon Dots, Photoluminescence, Luminescence Decay Kinetics, Atomic Force Microscopy, Infrared Absorption Spectroscopy.
  1. X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens. J.Am. Chem. Soc., 126 (40), 12736-12737 (2004). DOI: 10.1021/ja040082h
  2. S.N. Baker, G.A. Baker. Angew. Chem. Int. Ed., 49 (38), 6726-6744 (2010). DOI: 10.1002/anie.200906623
  3. L. Xiao, H. Sun. Nanoscale Horiz., 3 (6), 565-597 (2018). DOI: 10.1039/c8nh00106e
  4. S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang. Angew. Chem. Int. Ed., 52 (14), 3953-3957 (2013). DOI: 10.1002/anie.201300519
  5. F. Yuan, Z. Wang, X. Li, Y. Li, Z. Tan, L. Fan, S. Yang. Adv. Mater., 29 (3), 1604436 (2017). DOI: 10.1002/adma.201604436
  6. N.V. Tepliakov, E.V. Kundelev, P.D. Khavlyuk, Y. Xiong, M.Y. Leonov, W. Zhu, A.V. Baranov, A.V. Fedorov, A.L. Rogach, I.D. Rukhlenko. ACS Nano, 13 (9), 10737-10744 (2019). DOI: 10.1021/acsnano.9b05444
  7. YF. Kang, YH. Li, YW. Fang, Y. Xu, XM. Wei, XB. Yin. Sci. Rep., 5, 11835 (2015). DOI: 10.1038/srep11835
  8. X. Shan, L. Chai, J. Ma, Z. Qian, J. Chen, H. Feng. Analyst, 139 (10), 2322-2325 (2014). DOI: 10.1039/c3an02222f
  9. A.H. Loo, Z. Sofer, D. Bousa, P. Ulbrich, A. Bonanni, M. Pumera. ACS Appl. Mater. Interfaces, 8 (3), 1951-1957 (2016). DOI: 10.1021/acsami.5b10160
  10. H. Yu, Y. Zhao, C. Zhou, L. Shang, Y. Peng, Y. Cao, L.Z. Wu, C.H. Tung, T. Zhang. J Mater Chem A, 2, 3344-3351 (2014). DOI: 10.1002/cssc.201700943
  11. X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S.V Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang. ACS Nano, 7 (12), 11234-11241 (2013). DOI: 10.1021/nn405017q
  12. M. Zheng, S. Liu, J. Li, D. Qu, H. Zhao, X. Guan, X. Hu, Z. Xie, X. Jing, Z. Sun. Adv. Mater., 26 (21), 3554-3560 (2014). DOI: 10.1002/adma.201306192
  13. K. Hola, Y. Zhang, Y. Wang, E.P. Giannelis, R. Zboril, A.L. Rogach. Nano Today, 9 (5), 590-603 (2014). DOI: 10.1016/j.nantod.2014.09.004
  14. S.T. Yang, L. Cao, P.G. Luo, F. Lu, X. Wang, H. Wang, M.J. Meziani, Y. Liu, G. Qi, Y.P. Sun. J. Am. Chem. Soc., 131 (32), 11308-11309 (2009). DOI: 10.1021/ja904843x
  15. E.A. Stepanidenko, I.A. Arefina, P.D. Khavlyuk, A. Dubavik, K.V. Bogdanov, D.P. Bondarenko, S.A. Cherevkov, E.V. Kundelev, A.V. Fedorov, A.V. Baranov, V.G. Maslov, E.V. Ushakova, A.L. Rogach. Nanoscale, 12 (2), 602-609 (2020). DOI: 10.1039/c9nr08663c
  16. E.V. Kundelev, N.V. Tepliakov, M.Y. Leonov, V.G. Maslov, A.V. Baranov, A.V. Fedorov, I.D. Rukhlenko, A.L. Rogach. J. Phys. Chem. Lett., 11 (19), 8121-8127 (2020). DOI: 10.1021/acs.jpclett.0c02373
  17. E.V. Kundelev, N.V. Tepliakov, M.Y. Leonov, V.G. Maslov, A.V. Baranov, A.V. Fedorov, I.D. Rukhlenko, A.L. Rogach. J. Phys. Chem. Lett., 10 (17), 5111-5116 (2019). DOI: 10.1021/acs.jpclett.9b01724
  18. E.V. Kundelev, E.D. Strievich, N.V. Tepliakov, A.D. Murkina, A.Y. Dubavik, E.V. Ushakova, A.V. Baranov, A.V. Fedorov, I.D. Rukhlenko, A.L. Rogach. J. Phys. Chem. C, 126 (42), 18170-18176 (2022). DOI: 10.1021/acs.jpcc.2c05926
  19. B.C.M. Martindale, G.A.M. Hutton, C.A. Caputo, E. Reisner. J. Am. Chem. Soc., 137 (18), 6018-6025 (2015). DOI: 10.1021/jacs.5b01650
  20. B.C.M. Martindale, G.A.M. Hutton, C.A. Caputo, S. Prantl, R. Godin, J.R. Durrant, E. Reisner. Angew. Chem. Int. Ed., 129 (23), 6559-6463 (2017). DOI: 10.1002/anie.201700949

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru