Mechanical properties and thermal conductivity of composites based on crumpled graphene and nickel nanoparticles: molecular dynamics
Krylova K. A. 1,2, Safina L. R. 1, Murzaev R. T. 1, Shcherbinin S. A. 3,4, Baimova J. A. 1,5, Mulyukov R. R. 1,2
1Institute of Metal Superplasticity Problems, Russian Academy of Sciences, Ufa, Bashkortostan, Russia
2State Petroleum Technical University, Ufa, Bashkortostan, Russia
3Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
4Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
5Ufa University of Science and Technology, Ufa, Russia
Email: bukreevakarina@gmail.com, saflia@mail.ru, murzaevrt@gmail.com, stefanshcherbinin@gmail.com, julia.a.baimova@gmail.com

PDF
The mechanical properties and thermal conductivity of a composite based on crumpled graphene flakes and nickel nanoparticles obtained by high-temperature hydrostatic compression are investigated by the molecular dynamics. The pores of the graphene matrix of the composite are filled with nickel nanoparticles of different sizes (respectively, different contents of Ni - 8, 16 and 24 at.%). It was found that an increase in the amount of nickel on the one hand increases the thermal conductivity of the composite, and on the other hand reduces its strength, since strength is determined by the presence of a graphene network, and thermal conductivity is determined by the presence of a conductive metal. The obtained results on thermophysical properties combined with high mechanical characteristics of Ni/graphene composites allow us to predict their application for the manufacture of new flexible electronics, supercapacitors and lithium-ion batteries. Keywords: crumpled graphene, Ni/graphene composite, mechanical properties, thermal conductivity coefficient, molecular dynamics.
  1. M.M. Slepchenkov, P.V. Barkov, O.E. Glukhova. ZhTF 93, 4, 481 (2023)
  2. M.K. Rabchinskii, A.D. Trofimuk, A.V. Shvidchenko, M.V. Baidakova, S.I. Pavlov, D.A. Kirilenko, Yu.V. Kulvelis, M.V. Gudkov, K.A. Shiyanova, V.S. Koval, G.S. Peters, V.T. Lebedev, V.P. Melnikov, A.T. Dideikin, P.N. Brunkov. Tech. Phys. 67, 12, 1611 (2022)
  3. A.G. Sheinerman, S.A. Krasnitskii. Tech. Phys. Lett. 47, 12, 873 (2021)
  4. J.A. Baimova, S.A. Shcherbinin. Materials 16, 1, 202 (2023)
  5. J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang. Scripta Mater. 66, 594 (2012)
  6. A.A. Leonov, E.V. Abdulmenova, M.A. Rudmin, J. Li. Lett. Mater. 11, 4, 452 (2021)
  7. O.Y. Kurapova, I.V. Smirnov, E.N. Solovyeva, I.Y. Archakov, V.G. Konakov. Lett. Mater. 10, 2, 164 (2020)
  8. O. Guler, N. Bav gci. J. Mater. Res. Technol. 9, 3, 6808 (2020)
  9. I.A. Zavidovskiy, A.A. Khaidarov, O.A. Streletskiy. Phys. Solid State 64, 8, 474 (2022)
  10. D. Wei, J. Liang, Y. Zhu, Z. Yuan, N. Li, Y. Qian. Part. Part. Syst. Char. 30, 2, 143 (2013)
  11. X. Li, J. Natsuki, T. Natsuki. Physica E 124, 114249 (2020)
  12. Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng. Nano Energy 1, 1, 107 (2012)
  13. C. Qiu, Y. Su, J. Yang, B. Chen, Q. Ouyang, D. Zhang. Compos. C 4, 100120 (2021)
  14. Y. Yang, M. Liu, J. Du, W. Zhang, S. Zhou, W. Ren, Q. Zhou, L. Shi. Carbon 191, 55 (2022)
  15. D. Rapp, S. Hocker, H. Lipp, S. Schmauder. Comput. Mater. Sci. 226, 112247 (2023)
  16. Y. Huang, Z. Yang, Z. Lu. Comp. Mater. Sci. 186, 109969 (2021)
  17. M. Yang, Y. Liu, T. Fan, D. Zhang. Prog. Mater. Sci. 110, 100652 (2020)
  18. N.-W. Pu, G.-N. Shi, Y.-M. Liu, X. Sun, J.-K. Chang, C.-L. Sun, M.-D. Ger, C.-Y. Chen, P.-C. Wang, Y.-Y. Peng, C.-H. Wu, S. Lawes. J. Power Sources 282, 248 (2015)
  19. A.Y. Galashev, O.R. Rakhmanova. Phys. Lett. A 384, 31, 126790 (2020)
  20. A.E. Galashev, L.A. Elshina, R.V. Muradymov. Russ. J. Phys. Chem. A 90, 2444 (2016)
  21. A.E. Galashev, O.R. Rakhmanova, L.A. Elshina. Russ. J. Phys. Chem. B 12, 3, 403 (2018)
  22. L.R. Safina, J.A. Baimova, K.A. Krylova, R.T. Murzaev, S.S. Shcherbinin, R.R. Mulyukov. Phys. Status Solidi RRL 15, 1, 2100429 (2021)
  23. L.R. Safina, K.A. Krylova, J.A. Baimova. Mater. Today Phys. 28, 100851 (2022)
  24. Y. Zhang, F.M. Heim, J.L. Bartlett, N. Song, D. Isheim, X. Li. Sci. Adv. 5, 5, 1 (2019)
  25. L.R. Safina, J.A. Baimova, R.R. Mulyukov. Mech. Adv. Mater. Mod. Proc. 5, 2 (2019)
  26. E. Ganz, A.B. Ganz, L.-M. Yang, M. Dornfelda. Phys. Chem. Chem. Phys. 19, 3756 (2017)
  27. K.A. Krylova, L.R. Safina, S.A. Shcherbinin, J.A. Baimova. Materials 15, 11, 4038 (2022)
  28. S.J. Stuart, A.B. Tutein, J.A. Harrison. J. Chem. Phys. 112, 14, 6472 (2000)
  29. K.P. Katin, V.S. Prudkovskiy, M.M. Maslov. Micro Nano Lett. 13, 2, 160 (2018)
  30. A.Y. Galashev, K.P. Katin, M.M. Maslov. Phys. Lett. A 383, 2--3, 252 (2019)
  31. M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, C.Z. Wang. Phil. Mag. 92, 35, 4454 (2012)
  32. C. de Tomas, I. Suarez-Martinez, N.A. Marks. Carbon 109, 681 (2016)
  33. V.E. Zalizniak, O.A. Zolotov. Mol. Simulat. 43, 17, 1 (2017)
  34. L.R. Safina, E.A. Rozhnova, R.T. Murzaev, J.A. Baimova. Appl. Sci. 13, 2, 916 (2023)
  35. W. Humphrey, A. Dalke, K. Schulten. J. Mol. Graphics 14, 1, 33 (1996)
  36. T. Wejrzanowski, M. Grybczuk, M. Chmielewski, K. Pietrzak, K.J. Kurzydlowski, A. Strojny-Nedza. Mater. Design 99, 163 (2016)
  37. C.Y. Ho, R.W. Powell, P.E. Liley. Thermal Conductivity of Selected Materials. U.S. Department of Commerce, National Bureau of Standards, Washington (1968). 180 p
  38. S.P. Yuan, P.X. Jiang. Int. J. Thermophys 27, 581 (2006)
  39. A.A. Le-Zakharov, A.M. Krivtsov, A.V. Porubov. Continuum Mech. Therm. 31, 1873 (2019)
  40. A.V. Verkhovtsev, S. Schramm, A.V. Solov'yov. Eur. Phys. J. D 68, 246 (2014)
  41. A.V. Savin, O.V. Gendelman. Phys. Rev. E 89, 012134 (2014)
  42. Z. Fan, A. Marconnet, S.T. Nguyen, C.Y. Lim, H.M. Duong. Int. J. Heat Mass Tran. 76, 122 (2014)
  43. Y. Zhong, M. Zhou, F. Huang, T. Lin, D. Wan. Solar Energy Mater. Solar C 113, 195 (2013)
  44. R.T. Murzaev, K.A. Krylova, J.A. Baimova. Materials 16, 3747 (2023)
  45. L. Cao, C. Wang, Y. Huang. Chem. Eng. J. 454, 140094 (2023)
  46. T. Zhang, X. Gao, J. Li, L. Xiao, H. Gao, F. Zhao, H. Ma. Defence Technology (2023). In press

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru