Long-term effects of cyclic magnetic fields on the magnetocaloric properties of the Ni43.18Mn45.15In11.67 Heusler alloy
Khanov L. N. 1, Aliev A. M. 1, Mashirov A. V. 2
1Amirkhanov Institute of Physics, Daghestan Federal Research Center, Russian Academy of Sciences, Makhachkala, Russia
2Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
Email: hanov82@mail.ru, lowtemp@mail.ru, a.v.mashirov@mail.ru

PDF
The thermal expansion (Δ l/l0), magnetocaloric effect (Delta Δ Tad) and the magnetostriction (λ) of a polycrystalline sample of the Ni43.18Mn45.15In11.67 Heusler alloy were studied. A correlation has been established between the magnetocaloric effect and magnetostriction. The smaller value of the MCE in the cooling run can be explained by the smaller contribution of the lattice subsystem to the total measured MCE. It is found that the long-term action of the cyclic magnetic field results in a decrease in the value of Delta Δ Tad in the region of the first-order magnetostructural phase transition. The virgin properties of the alloy can be restored by transformation the sample to the austenite phase. The Heusler alloy Ni43.18Mn45.15In11.67 can be used as a working body in magnetic cooling technology, provided that the alloy periodically transforms to the austenite phase. Keywords: Heusler alloys, thermal expansion, magnetocaloric effect, magnetostriction, thermal cycling, cyclic magnetic fields.
  1. K.A. Gschneidner, Jr., V.K. Pecharsky. Int. J. Refrig. 31, 945 (2008)
  2. M.H. Phan, S.C. Yu. J. Magn. Magn. Mater. 308, 325 (2007)
  3. B.F. Yu, Q. Gao, B. Zhang, X.Z. Meng, Z. Chen. Int. J. Refrig. 26, 622 (2003)
  4. V.K. Pecharsky, K.A. Gschneidner Jr. Phys. Rev. Lett. 78, 4494 (1997)
  5. J. Lyubina, K. Nenkov, L. Schultz, O. Gutfleisch. Phys. Rev. Lett. 101, 177203 (2008)
  6. O. Tegus, E. Bruck, K.H.J. Buschow, F.R. de Boer. Nature 415, 150 (2002)
  7. V.A. Chernenko, V.A. L'vov, E. Cesari, J.M. Barandiaran. Handbook of Magnetic Materials. Delf, Elsevier (2019). V. 28. P. 1--45
  8. Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, J.R. Zhang, B.X. Gu, Y.W. Du. Solid State Commun. 146, 124 (2008)
  9. A.N. Vasiliev, V.D. Buchel'nikov, T. Takagi, V.V. Khovailo, E.I. Estrin. UFN, 173, (578) (2003). (in Russian)
  10. V.V. Khovaylo, V.D. Buchelnikov, R. Kainuma, V.V. Koledov, M. Ohtsuka, V.G. Shavrov, T. Takagi, S.V. Taskaev, A.N. Vasiliev. Phys. Rev. B 72, 224408 (2005)
  11. A.M. Aliev. Direct magnetocaloric effect measurement technique in alternating magnetic fields. arXiv:1409.6898 (2014)
  12. A.M. Aliev, A.B. Batdalov, V.S. Kalitka. Pis'ma v ZhTF, 9, 736 (2009). (in Russian)
  13. S.I. Novikova. Teplovoye rasshireniye tverdykh tel. Nauka, M. (1974). 294 p. (in Russian)
  14. V. Recarte, J.I. Perez-Landazabal, V. Sanchez-Alarcos, J.A. Rodriguez-Velamazan. Acta Mater. 60, 1937 (2012)
  15. L.N. Khanov, A.B. Batdalov, A.V. Mashirov, A.P. Kamantsev, A.M. Aliev. FTT 60, 1099 (2018). (in Russian)
  16. A.B. Batdalov, A.M. Aliev, L.N. Khanov, V.D. Butchelnikov, V.V. Sokolonsky, V.V. Koledov, V.G. Shavrov, A.V. Mashirov, E.T. Dilmieva. ZhETF 149, 1011 (2016). (in Russian)
  17. A.B. Batdalov, L.N. Khanov, A.V. Mashirov, V.V. Koledov, A.M. Aliev. J. Appl. Phys. 129, 123901 (2021)
  18. A.M. Aliev, A.B. Batdalov, L.N. Khanov. Appl. Phys. Lett. 112, 142407 (2018)
  19. A.M. Aliev, L.N. Khanov, A.G. Gamzatov, A.B. Batdalov, D.R. Kurbanova, K.I. Yanushkevich, G.A. Govor. Appl. Phys. Lett. 118, 072404 (2021)
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru