Near-infrared emitting NaLuF4: Yb3+, Er3+, Ce3+ nanoparticles for compact waveguide amplifiers and bioimaging
Khaydukov K.V. 1,2, Krylov I.V. 1, Nikolaeva M.E. 3,2, Rocheva V.V. 1, Khaydukov E.V. 1,2
1Federal Research Center "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
2Moscow Pedagogical State University, Moscow, Russia
3Limited Liability Company Syntol, Moscow, Russia
Email: haidukov_11@mail.ru, Ivan_Krylov@bk.ru, mesarycheva@gmail.com, vrocheva@mail.ru, khaydukov@mail.ru

PDF
Fluoride nanocrystals co-doped with lanthanide ions are well known due to the possibility of conversion near-infrared (NIR) radiation into photoluminescence with large anti-Stokes shift. Owing to upconversion effect, such nanomaterials have shown great potential in photonics and biomedicine. However, fluoride nanoparticles can be reconfigured to photoluminescence with a Stokes shift into the near-infrared region of the spectrum. In this work, we focused on the properties of NaRF4 : Yb3+, Er3+, Ce3+ (R = Y, Lu) nanoparticles exhibiting intense stokes luminescence in the vicinity of 1530 nm at 975 nm excitation. Photoluminescence quantum efficiency of synthesized nanoparticles was evaluated as 28% at 0.6 W/cm2 excitation intensity. Based on the photoluminescent properties of nanoparticles we designed compact waveguide amplifier for C-band telecommunication and developed time gated imaging system for NIR-to-NIR biovisualization. Keywords: waveguide amplifier, fluoride nanocrystals, bioimaging, polymer waveguides, NaLuF4 : Yb3+, Er3+, Ce3+. DOI: 10.61011/EOS.2023.05.56514.75-22
  1. D. Hao, D. Shuo-Ren, Z. Xiao-Yu, L. Guang-Ming, S. Ling-Dong, L. Lin-Dong, Z. Pei-Zhi, Z. Chao, Y. Chun-Hua. Chem. Rev., 115, 10725-10815 (2015). DOI: 10.1021/acs.chemrev.5b00091
  2. D.N. Karimov, P.A. Demina, A.V. Koshelev, V.V. Rocheva, A.V. Sokovikov, A.N. Generalova, V.P. Zubov, E.V. Khaydukov, M.V. Kovalchuk, V.Y. Panchenko. Nanotechnol. Russia, 15, 655-678 (2020). DOI: 10.1134/S1995078020060117
  3. Y. Zhong, H. Dai. Nano Res., 13, 1281-1294 (2020). DOI: 10.1007/s12274-020-2721-0
  4. A.N. Generalova, B.N. Chichkov, E.V. Khaydukov. Adv. Colloid Interface Sci., 245, 1-19 (2017). DOI: 10.1016/j.cis.2017.05.006
  5. G. Liu. Springer Series in Materials Science, 83, 1-94 (2005). DOI: 10.1007/3-540-28209-2_1
  6. A. Nadort, J. Zhao, E.M. Goldys. Nanoscale, 8 (27), 13099-13130 (2016). DOI: 10.1039/C5NR08477F
  7. F. Wang. Chem. Soc. Rev., 38 (4), 976 (2009). DOI: 10.1039/B809132N
  8. L.C. Ong. Lumin., 25 (4), 290-293 (2010). DOI: 10.1007/s13404-017-0221-0
  9. E.A. Grebenik, A.B. Kostyuk, S.M. Deyev. Russian Chem. Rev., 85 (12), 1277 (2016). DOI: 10.1070/RCR4663
  10. M. Kaiser, C. Wurth, M. Kraft, I. Hyppanen, T. Soukka, U. Resch-Genger. Nanoscale, 9 (28), 10051-10058 (2017). DOI: 10.1039/C7NR02449E
  11. E.V. Khaydukov, K.E. Mironova, V.A. Semchishen, A.N. Generalova, A.V. Nechaev, D.A. Khochenkov, E.V. Stepanova, O.I. Lebedev, A.V. Zvyagin, S.M. Deyev, V.Ya. Panchenko. Sci. Rep., 6, 35103 (2016). DOI: 10.1038/srep35103
  12. S. Kuznetsov, Yu. Ermakova, V. Voronov, P. Fedorov, D. Busko, I.A. Howard, B.S. Richards, A. Turshatov. J. Mat. Chem. C, 6 (3), 598-604 (2018). DOI: 10.1039/c7tc04913g
  13. E. Madirov, S.V. Kuznetsov, V.A. Konyushkin, A.N. Nakladov, P.P. Fedorov, Th. Bergfeldt, D. Hudry, D. Busko, I.A. Howard, B.S. Richards, A. Turshtov. J. Mater. Chem. C, 9, 3493-3503 (2021). DOI: 10.1039/D1TC00104C
  14. E. Downing. Science, 273 (5279), 1185-1189 (1996). DOI: 10.1126/science.273.5279.118
  15. R. Deng. Nature Nanotechnology, 10, 237-242 (2015). DOI: 10.1038/nnano.2014.317
  16. M. Kumar. Biosens. Bioelectron., 25, 2431-2435 (2010). DOI: 10.1016/j.bios.2010.03.038
  17. K.K. Green, W. Janina, F. Shuang. Scientific Reports, 7, 762 (2017). DOI: 10.1038/s41598-017-00869-3
  18. E.V. Khaydukov, V.V. Rocheva, K.E. Mironova. Nanotechnol. Russia, 10, 904-909 (2015). DOI: 10.1134/S1995078015060051
  19. J.M. Meruga, W.M. Cross, P.S. May, Q. Luu, G.A. Crawford, J.J. Kellar. Nanotechnology, 23 (39), 395201 (2012). DOI: 10.1088/0957-4484/23/39/395201
  20. S.Y. Hao, D. Shang, H. Li, C. Agren, C. Yang, G. Chen. Nanoscale, 9 (6), 6711-6715 (2017). DOI: 10.1039/C7NR01008G
  21. V.V. Rocheva, A.V. Koroleva, A.G. Savelyev, K.V. Khaydukov, A.N. Generalova, A.V. Nechaev, A.E. Guller, V.A. Semchishen, B.N. Chichkov, E.V. Khaydukov. Scientific Reports, 8, 3663 (2018). DOI: 10.1038/s41598-018-21793-0
  22. Q. Zhan, H. Liu, B. Wang, Q. Wu. Nature Commun., 8, 1058 (2017). DOI: 10.1038/s41467-017-01141-y
  23. E.V. Khaydukov, V.A. Semchishen, A.V. Zvyagin. Opt. Lett., 40 (7), 1169-1172 (2015). DOI: 10.1364/OL.40.001169
  24. M. Wang, Y. Zhu, C. Mao. Langmuir, 31, 7084-7090 (2015). DOI: 10.1021/la204015m
  25. G. Chen, H. Qiu, P.N. Prasad, X. Chen. Chem. Rev., 114 (10), 5161-5214 (2014). DOI: 10.1021/cr400425h
  26. X. Chen, Y. Zhu, D. Zhou, W. Xu, J. Zhu, G. Pan, Z. Yin, H. Wang. J. Mater. Chem., 5, 2451 (2017). DOI: 10.1039/C2JM34273A
  27. I.V. Krylov, R.A. Akasov, V.V. Rocheva, N.V. Sholina, D.A. Khochenkov, A.V. Nechaev, N.V. Melnikova, A.A. Dmitriev, A.V. Ivanov, A.N. Generalova, E.V. Khaydukov. Front. Chem., 8, 295 (2020). DOI: 10.3389/fchem.2020.00295
  28. D. Wang, P. Ma, J. Zhang, Y. Wang. ACS Applied Energy Materials, 1 (2), 447-454 (2018). DOI: 10.1021/acsaem.7b00093
  29. Y. Zhong, Z. Ma, S. Zhu. Nat. Commun., 8, 737 (2017). DOI: 10.1038/s41467-017-00917-6
  30. X. Zhai, J. Li, S. Liu, X. Liu, D. Zhao, F. Wang, D. Zhang, G. Qin, W. Qin. Opt. Mater. Express, 3, 270-277 (2013). DOI: 10.1364/OME.3.000270
  31. C. Cao, Y. Xie, S.-W. Li, C. Hong. Nanomaterials, 11, 2676 (2021). DOI: 10.3390/nano11102676
  32. R.G. Smart, J.L. Zyskind, D.J. DiGiovanni. IEEE Photon. Technol. Lett., 5 (7), 770-773 (2002). DOI: 10.1364/JOSAB.21.000739
  33. H. Gao, H. Li, G.F.R. Chen. Sci. Rep., 11, 21292 (2021). DOI: 10.1038/s41598-021-00805-6
  34. X. Zhai. Opt. Mater. Express, 3, 270-277 (2013). DOI: 10.1364/AO.53.006148
  35. P.C. Zhao, M.L. Zhang, T.J. Wang, X.Y. Liu, X.S. Zhai, G.S. Qin, W.P. Qin, F. Wang, D.M. Zhang, J. Nanomater., 2014, 153028 (2014). DOI: 10.1155/2014/153028
  36. A.Q. Quang, R. Hierle, J. Zyss, I. Ledoux, G. Cusmai, R. Costa, A. Barberis, S.M. Pietralunga. Appl. Phys. Lett., 89, 141124 (2006). DOI: 10.1063/1.2360179
  37. C. Alius, S. Oprescu, C. Balalau, A. Elena Nica. J. Clin. Invest. Surg., 3, 1-8 (2018). DOI: 10.25083/2559.5555/31.18
  38. H.M. Gil, T.W. Price, K. Chelani, J.-S.G. Bouillard, S.D.J. Calaminus, G.J. Stasiuk. iScience, 24, 102189 (2021). DOI: 10.1016/j.isci.2021.102189
  39. W. Li, G. Zhang, L. Liu. Front Bioeng. Biotechnol., 26 (9), 768927 (2021). DOI: 10.3389/fbioe.2021.768927
  40. E.V. Khaydukov, K.N. Boldyrev, K.V. Khaydukov, I.V. Krylov, I.M. Asharchuk, A.G. Savelyev, V.V. Rocheva, D.N. Karimov, A.V. Nechaev, A.V. Zvyagin. Opt. Spectrosc., 126, 95-101 (2019). DOI: 10.1134/S0030400X19010077
  41. J. Yuan, G. Wang. TrAC Trends in Analytical Chemistry, 25 (5), 490-500 (2006). DOI: 10.1016/j.trac.2005.11.013

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru