The effect of powerful ultrasonic assistance during pressing on structural and luminescent properties of YAG : Ce3+ ceramics
Valiev D.T.1, Khasanov O.L.1, Dvilis E.S.1, Paygin V. D.1, Stepanov S. A.1
1Tomsk Polytechnic University, Tomsk, Russia
Email: rubinfc@tpu.ru, khasanov@tpu.ru, dvilis@tpu.ru, paygin@tpu.ru, stepanovsa@tpu.ru
Yttrium aluminum garnet (YAG) ceramics doped with Ce3+ was prepared by dry compaction using the common uniaxial pressing under powerful ultrasound assistance (PUA). The structure and luminescent properties of sintered ceramics were investigated. It was demonstrated that the powerful ultrasonic assistant during the dry pressing has a positive effect on the structural and luminescent characteristics of YAG : Ce3+ ceramics. The sintered material consolidation is very intensive accompanied by a decrease in the number of pores and grain growth at a sintering temperature of 1650 oC. The luminous efficiency of YAG : Ce3+ ceramics vary from 120 to 219 lm/W (without ultrasound treatment) and from 120 to 250 lm/W (prepared with ultrasound conditions) closely related with the phase purity and implicitly with sintering temperature. It was demonstrated the positive effect of PUA on the thermal properties of ceramics. Keywords: YAG : Ce ceramics, powerful ultrasonic compaction, luminescent properties, elastic-plastic properties, luminous efficiency. DOI: 10.61011/EOS.2023.05.56510.71-22
- L. Zhang, B. Sun, L. Gu, W. Bu, X. Fu, R. Sun, T. Zhou, F.A. Selim, C. Wong, H. Chen. J. Alloys Compd., 455, 425-432 (2018). DOI: 10.1016/j.apsusc.2018.05.133
- X. Li, C. Zhang, J. Chen, Q. Liu, Z. Bai, X. Liu, X. Mi, Cer. Int., 49, 5489-5495 (2023). DOI: 10.1016/j.ceramint.2022.02.190
- Q.Q. Zhu, S. Li, Q. Yuan, H. Zhang, L. Wang. J. of the European Ceramic Society, 41 (1), 735-740 (2021). DOI: 10.1016/j.jeurceramsoc.2020.09.006
- M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov, F. Jermann. ECS J. Solid State Sc. and Technol., 2 (2), 3168-3176 (2013). DOI: 10.1149/2.023302jss
- T. Ji, T. Wang, H. Li, Q. Peng, H. Tang, S. Hu, A. Yakovlev, Y. Zhong, X. Xu, Adv. Opt. Mater., 10, 2102056 (2022). DOI: 10.1002/adom.202102056
- X. Liu, H. Zhou, Z. Hu, X. Chen, Y. Shi, J. Zou, J. Li. Opt. Mater., 88, 97-102 (2019). DOI: 10.1016/j.optmat.2018.11.031
- C. Cozzan, G. Lheureux, N. O'dea, E.E. Levin, J. Graser, T.D. Sparks. ACS Appl. Mater. Interfaces, 10, 5673-5681 (2018). DOI: 10.1021/acsami.8b00074
- M. Kottaisamy, P. Thiyagarajan, J. Mishra, M.S. Ramachandra Rao. Mater. Res. Bull., 43 (7), 1657-1663 (2008). DOI: 10.1016/j.materresbull.2007.09.005
- G.H. Liu, Z.Z. Zhou, Y. Shi, Q. Liu, J.Q. Wan, Y.B. Pan. Mater. Lett., 139, 480-482 (2015) DOI: 10.1016/j.matlet.2014.10.114
- C. Basu, M. Meinhardt-Wollweber, B. Roth. Adv. Opt. Tech., 2 (4), 213-321(2013). DOI: 10.1515/aot-2013-0031
- S. Li, Q. Zhu, D. Tang, X. Liu, G. Ouyang, L. Cao. J. Mater. Chem. C, 4 (37), 32-36 (2016). DOI: 10.1039/C6TC03215J
- S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto. Opt. Mater., 33 (5), 688-691 (2011). DOI: 10.1016/j.optmat.2010.06.005
- Q. Liu, J. Liu, J. Li, M. Ivanov, A. Medvedev, Y.P. Zeng, G.X. Jin, X.W. Ba, W.B. Liu, B.X. Jiang, Y.B. Pan, J.K. Guo. J. Alloys Compd., 616, 81-88 (2014). DOI: 10.1016/j.jallcom.2014.06.013
- Y.R. Tang, S.M. Zhou, C. Chen, X.Z. Yi, Y. Feng, H. Lin, S. Zhang. Opt. Express, 23 (14), 17923-17928 (2015). DOI: 10.1364/OE.23.017923
- G.H. Liu, Z.Z. Zhou, Y. Shi, Q. Liu, J.Q. Wan, Y.B. Pan. Mater. Lett., 139, 480-482 (2015). DOI: 10.1016/j.matlet.2014.10.114
- K. Liu, D. He, H. Wang, T. Lu, F. Li, X. Zhou. Scripta Mater., 66 (6), 319-322 (2012). DOI: 10.1016/j.scriptamat.2011.11.012
- R. Chaima, M. Kalina, James Z. Shen. J. Eur. Ceram. Soc., 27 (11), 3331-3337 (2007). DOI: 10.1016/j.jeurceramsoc.2007.02.193
- V.S. Kortov, S.V. Zvonarev, A.N. Kiryakov, D.V. Ananchenko. Radiation Measurements, 90, 196-200 (2016). DOI: 10.1016/j.radmeas.2016.02.015
- O.L. Khasanov, E.S. Dvilis. Advances in Applied Ceramics, 107, 135-141 (2008). DOI: 10.1179/174367508X297830
- E.S. Dvilis, O.L. Khasanov, V.M. Sokolov, Yu.P. Pokholkov. Method for compacting powder materials into articles and a mold for implementing the method U.S. Patent No. 6919041 B2 19 (2005)
- V.V. Osipov, O.L. Khasanov, V.A. Shitov, E.S. Dvilis, M.G. Ivanov, A.N. Orlov, V.V. Platonov, I.V. Vyukhina, A.A. Kachaev, V.M. Sokolov. Nanotech. Russia, 3 (7), 474-480 (2008). DOI: 10.1134/S1995078008070100
- O.L. Khasanov, E.S. Dvilis, E.F. Polisadova, S.A. Stepanov, D.T. Valiev, V.D. Paygin, D.V. Dudina. Ultrasonics Sonochem., 50, 166-171 (2019). DOI: 10.1016/j.ultsonch.2018.09.013
- L.E. Muresan, A.I. Cadis, I. Perhaita, D.T. Silipas, L. Barbu Tudoran. Mater. Res. Bull., 68, 295-301 (2015). DOI: 10.1016/j.materresbull.2015.03.063
- D. Valiev, T. Han, V. Vaganov, S. Stepanov. J. Phys. Chem. Solids, 116, 1-6 (2018). DOI: 10.1016/j.jpcs.2018.01.007
- D. Valiev, T. Han, S. Stepanov, V. Vaganov, V. Paygin. Mater. Res. Express, 5, 096201 (2018). DOI: 10.1088/2053-1591/aad609
- V.D. Paygin, S.A. Stepanov, D.T. Valiev, E.S. Dvilis, O.L. Khasanov, V.A. Vaganov, T.R. Alishin, M.P. Kalashnikov, A.E. Ilela. Nanotech. Russia, 14, 113-117 (2019). DOI: 10.1134/S1995078019020113
- Y. Pan, M. Wu, Q. Su. Mater. Sci. Eng. B, 106, 251-256 (2004). DOI: 10.1016/j.mseb.2003.09.031
- Y. Zorenko, T. Zorenko, V.V. Gorbenko, T. Voznyak, V. Savchyn, P. Bilski, A. Twardak. Opt. Mater., 34 (8), 1314-1319 (2012). DOI: 10.1016/j.optmat.2012.02.007
- A. Wiatrowska, W. Keur, C. Ronda. J. Lumin., 189, 9-18 (2017). DOI: 10.1016/j.jlumin.2016.11.001
- J. Tang, Y. He, L. Hao, X. Xu et al. J. Mater. Res., 28 (18), 2598--2604 (2013). DOI: 10.1557/jmr.2013.228
- X. Wang, J. Li, P. Shi, W. Guan, H. Zhang. Opt. Mater., 46, 432-437 (2015). DOI: 10.1016/j.optmat.2015.04.060
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.