Anti-Jahn-Teller disproportionation and prospects for spin-triplet superconductivity in d-element compounds
Moskvin A. S.
1, Panov Yu. D.
11Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
Email: alexander.moskvin@urfu.ru, yuri.panov@urfu.ru
We argue that the unusual properties of a wide class of materials based on Jahn-Teller 3d- and 4d-ions with different crystal and electronic structures, from quasi-two-dimensional unconventional superconductors (cuprates, nickelates, ferropnictides/chalcogenides, ruthenate Sr2RuO4), manganites with local superconductivity to 3D ferrates (CaSr)FeO3, nickelates RNiO3 and silver oxide AgO with unusual charge and magnetic order can be explained within a single scenario. The properties of these materials are related to the instability of their highly symmetric Jahn-Teller "progenitors" with the ground orbital E-state to charge transfer with anti-Jahn-Teller disproportionation and the formation of a system of effective local composite spin-singlet or spin-triplet, electronic or hole bosons moving in a non-magnetic or magnetic lattice. These unusual systems are characterized by an extremely rich variety of phase states from non-magnetic and magnetic insulators to unusual metallic and superconducting states. Keywords: Jahn-Teller effect, disproportionation, local composite bosons, spin-triplet superconductivity. DOI: 10.61011/PSS.2023.07.56394.37H
- A.J. Leggett, Y. Liu. J. Supercond. Nov. Magn. 34, 1647 (2021)
- A.S. Moskvin. J. Phys.: Condens. Matter 25, 085601 (2013)
- A.S. Moskvin, I.L. Avvakumov. Proc. III Int. Conf. "Fundamental Problems of High-Temperature Superconductivity" (Moscow, Zvenigorod, 13-17 October 2008) p. 215
- S. Mazumdar. Phys. Rev. B 98, 205153 (2018). [Phys. Rev. Res. 2, 023382 (2020)]
- J.E. Hirsch. Proc. SPIE 10105. Oxide-based Materials and Devices VIII, 101051V (7 March 2017)
- J.E. Hirsch, F. Marsiglio. Physica C 564, 29 (2019)
- J.P. Ruf, H. Paik, N.J. Schreiber, H.P. Nair, L. Miao, J.K. Kawasaki, J.N. Nelson, B.D. Faeth, Y. Lee, B.H. Goodge, B. Pamuk, C.J. Fennie, L.F. Kourkoutis, D.G. Schlom, K.M. Shen. Nature Commun. 12, 59 (2021)
- M. Uchida, T. Nomoto, M. Musashi, R. Arita, M. Kawasaki. Phys. Rev. Lett. 125, 147001 (2020)
- A.S. Moskvin. Phys. Rev. B 79, 115102 (2009)
- Kim Yong-Jihn. Mod. Phys. Lett. B 12, 507 (1998)
- V.N. Krivoruchko. Low Temp. Phys. 47, 901 (2021)
- V. Markovich, I. Fita, A. Wisniewski, R. Puzniak, D. Mogilyansky, L. Titelman, L. Vradman, M. Herskowitz, G. Gorodetsky. Phys. Rev. B 77, 014423 (2008)
- M. Kasai, T. Ohno, Y. Kauke, Y. Kozono, M. Hanazono, Y. Sugita. Jpn. J. Appl. Phys. 29, L2219 (1990)
- A.V. Mitin, G.M. Kuz'micheva, S.I. Novikova. Russ. J. Inorg. Chem. 42, 1791 (1997)
- R. Nath, A.K. Raychaudhuri, Ya.M. Mukovskii, P. Mondal, D. Bhattacharya, P. Mandal. J. Phys. Condens. Matter 25, 15, 155605 (2013)
- A.S. Moskvin. Phys. Rev. B 84, 075116 (2011)
- A.S. Moskvin, Y.D. Panov. J. Supercond. Nov. Magn. 32, 61 (2019)
- A.S. Moskvin, Yu.D. Panov. Physics of the Solid State 61, 1553 (2019)
- A.S. Moskvin. Phys. Met. Metallogr. 120, 1252 (2019)
- A. Moskvin, Y. Panov. Condens. Matter 6, 24 (2021)
- A.S. Moskvin, Yu.D. Panov. JMMM 550, 169004 (2022)
- A.S. Moskvin. Optics and Spectroscopy 131, 491 (2023)
- P. Fischer, G. Roult, D. Schwarzenbach. J. Phys. Chem. Solids 32, 1641 (1971)
- M. Derzsi, K. Tokar, P. Piekarz, W. Grochala. Phys. Rev. B 105, L081113 (2022)
- N. Bachar, K. Koteras, J. Gawraczynski, W. Trzcinski, J. Paszula, R. Piombo, P. Barone, Z. Mazej, G. Ghiringhelli, A. Nag, Ke-Jin Zhou, J. Lorenzana, D. van der Marel, W. Grochala. Phys. Rev. Res. 4, 023108 (2022)
- C. Shen, B. Zemva, G.M. Lucier, O. Graudejus, J.A. Allman, N. Bartlett. Inorg. Chem. 38, 4570 (1999)
- V. Scatturin, P.L. Bellon, A.J. Salkind. J. Electrochem. Soc. 108, 819 (1961)
- J.P. Allen, D.O. Scanlon, G.W. Watson. Phys. Rev. B 84, 115141 (2011)
- A.S. Moskvin, Yu.D. Panov. Physics of the Solid State 62, 1554 (2020)
- E. Pangburn, A. Banerjee, H. Freire, C. Pepin. Phys. Rev. B 107, 245109 (2023)
- P.J. Hirschfeld. Comptes Rendus Phys. 17, 197 (2016)
- G.R. Stewart. Rev. Mod. Phys. 83, 1589 (2011)
- P.A. Lee, Xiao-Gang Wen. Phys. Rev. B 78, 144517 (2008)
- S.-H. Baek, H.-J. Grafe, F. Hammerath, M. Fuchs, C. Rudisch, L. Harnagea, S. Aswartham, S. Wurmehl, J. van den Brink, B. Buchner. Eur. Phys. J. B 85, 159 (2012)
- T. Hanke, S. Sykora, R. Schlegel, D. Baumann, L. Harnagea, S. Wurmehl, M. Daghofer, B. Buchner, J. van den Brink, C. Hess. Phys. Rev. Lett. 108, 127001 (2012)
- P.M.R. Brydon, M. Daghofer, C. Timm. J. van den Brink. Phys. Rev. B 83, 060501(R) (2011)
- J. Brand, A. Stunault, S. Wurmehl, L. Harnagea, B. Buchner, M. Meven, M. Braden. Phys. Rev. B 89, 045141 (2014)
- J.A. Gifford, B.B. Chen, J. Zhang, G.J. Zhao, D.R. Kim, B.C. Li, D. Wu, T.Y. Chen. AIP Adv. 6, 115023 (2016)
- A.S. Moskvin, Yu.D. Panov. J. Phys.: Conf. Ser. 2164, 012014 (2022)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.