Вышедшие номера
Изменения текстуры и удельного сопротивления пленок Ti под действием ионной бомбардировки
Селюков Р.В.1, Амиров И.И. 1, Изюмов М.О.1, Наумов В.В. 1, Мазалецкий Л.А. 2
1Ярославский филиал Физико-технологического института им. К.А. Валиева РАН, Ярославль, Россия
2Ярославский государственный университет им. П.Г. Демидова, Ярославль, Россия
Email: ildamirov@yandex.ru, vvnau@rambler.ru, rvselyukov@mail.ru
Поступила в редакцию: 30 мая 2023 г.
В окончательной редакции: 27 июля 2023 г.
Принята к печати: 28 июля 2023 г.
Выставление онлайн: 26 сентября 2023 г.

Исследованы кристаллическая текстура, микроструктура и удельное сопротивление пленок Ti толщиной 12-41 nm, подвергшихся ионной бомбардировке в аргоновой плазме при приложении к ним постоянного отрицательного смещения 20-30 V. Найдено, что такая обработка способствует формированию однокомпонентной текстуры [100] в пленках, имеющих исходно смешанную текстуру [100] + [001]. Показано, что чем меньше толщина пленки и чем выше смещение на ней, тем меньшее время обработки требуется для образования текстуры [100]. Обработка пленок толщиной 12 и 22 nm при смещении 30 V приводит к увеличению межплоскостных расстояний в направлении нормали к поверхности на 3% и уменьшению удельного сопротивления пленки на 14-20%. Ключевые слова: тонкие пленки, титан, ионная бомбардировка, плазма, текстура, удельное сопротивление, рентгеновская дифракция.
  1. J.-H. Huang, Ch.-H. Ma, H. Chen. Surf. Coat. Technol., 200, 5937 (2006). DOI: 10.1016/j.surfcoat.2005.09.005
  2. W. Zhang, L. Yi, J. Tu, P. Chang, D. Mao, J. Wu. J. Electron. Mater., 34, 1307 (2005). DOI: 10.1007/s11664-005-0254-7
  3. D.M. Li, F. Pan, J.B. Niu, M. Liu. J. Electron. Mater., 34, 1053 (2005). DOI: 10.1007/s11664-005-0095-4
  4. S. Okasha, Y. Sekine, S. Sasaki, Y. Harada. Thin Solid Films, 732, 138784 (2021). DOI: 10.1016/j.tsf.2021.138784
  5. J. Xiong, H.-Sh. Gu, K. Hu, M.-Z. Hu. Int. J. Miner. Metall. Mater., 17, 98 (2010). DOI: 10.1007/s12613-010-0117-y
  6. A.T. Tran, O. Wunnicke, G. Pandraud, M.D. Nguyen, H. Schellevis, P.M. Sarro. Sens. Act. A Phys., 202, 118 (2013). DOI: 10.1016/j.sna.2013.01.047
  7. M.A. Signore, A. Taurinoa, M. Catalano, M. Kim, Z. Che, F. Quaranta, P. Siciliano. Mater. Des., 119, 151 (2017). DOI: 10.1016/j.matdes.2017.01.035
  8. R. Toyama, S. Kawachi, J. Yamaura, Y. Murakami, H. Hosono, Y. Majima. Jpn. J. Appl. Phys., 59, 075504 (2020). DOI: 10.35848/1347-4065/ab9627
  9. К.А. Воротилов, О.М. Жигалина, В.А. Васильев, А.С. Сигов. ФТТ, 51 (7), 1268 (2009). [K.A. Vorotilov, O.M. Zhigalina, V.A. Vasil'ev, A.S. Sigov. Phys. Solid State, 51 (7), 1337 (2009). DOI: 10.1134/S106378340907004X]
  10. A.K. Sahoo, J.A. Chelvane, J. Mohanty. J. Mater. Sci.: Mater. Electron., 32, 7567 (2021). DOI: 10.1007/s10854-021-05471-y
  11. D.L. Ma, Y.T. Li, Q.Y. Deng, B. Huang, Y.X. Leng, N. Huang. Int. J. Mod. Phys. B, 33, 1940017 (2019). DOI: 10.1142/S0217979219400174
  12. M.J. Jung, K.H. Nam, L.R. Shaginyan, J.G. Han. Thin Solid Films, 435, 145 (2003). DOI: 10.1016/S0040-6090(03)00344-4
  13. W. Zhang, L. Yi, K.T. Yue, M. P. Chang, J. Wu. J. Mater. Sci: Mater. Electron., 17, 931 (2006). DOI: 10.1007/s10854-006-0046-8
  14. Y.-L. Liu, F. Liu, Q. Wu, A.-Y. Chen, X. Li, D. Pan. Trans. Nonferrous Met. Soc. China, 24, 2870 (2014). DOI: 10.1016/S1003-6326(14)63420-8
  15. B.G. Priyadarshini, Sh. Aich, M. Chakraborty. Bull. Mater. Sci., 37, 1691 (2014). DOI: 10.1007/s12034-014-0722-x
  16. B. Wu, Y. Yu, J. Wu, I. Shchelkanov, D.N. Ruzic, N. Huang, Y.X. Leng. Vacuum, 150, 144 (2018). DOI: 10.1016/j.vacuum.2018.01.039
  17. Y. He, J. Zhang, W. Yao, D. Li, X. Teng. Appl. Surf. Sci., 255, 4484 (2009). DOI: 10.1016/j.apsusc.2008.11.053
  18. K. Kamoshida, Y. Ito. J. Vac. Sci. Technol. B, 15, 961 (1997). DOI: 10.1116/1.589515
  19. А.С. Бабушкин, И.В. Уваров, И.И. Амиров. ЖТФ, 88 (12), 1845 (2018). DOI: 10.21883/JTF.2018.12.46786.37-18 [A.S. Babushkin, I.V. Uvarov, I.I. Amirov. Tech. Phys., 63 (12), 1800 (2018). DOI: 10.1134/S1063784218120228]
  20. Р.В. Селюков, И.И. Амиров, В.В. Наумов. Микроэлектроника, 51 (6), 488 (2022). DOI: 10.31857/ S0544126922700120 [R.V. Selyukov, I.I. Amirov, V.V. Naumov. Russ. Microelectron., 51 (6), 488 (2022). DOI: 10.1134/S1063739722700081]
  21. И.И. Амиров, Р.В. Селюков, В.В. Наумов, Е.С. Горлачев. Микроэлектроника, 50 (1), 3 (2021). DOI: 10.31857/S0544126921010038 [I.I. Amirov, R.V. Selyukov, V.V. Naumov, E.S. Gorlachev. Russ. Microelectron., 50 (1), 1 (2021). DOI: 10.1134/S1063739721010030]
  22. Р.В. Селюков, М.О. Изюмов, В.В. Наумов, Л.А. Мазалецкий. Письма в ЖТФ, 47 (23), 35 (2021). DOI: 10.21883/PJTF.2021.23.51782.18890 [R.V. Selyukov, M.O. Izyumov, V.V. Naumov, L.A. Mazaletskiy. Tech. Phys. Lett., 48 (15), 25 (2021). DOI: 10.21883/TPL.2022.15.53816.18890]
  23. И.И. Амиров, М.О. Изюмов, В.В. Наумов. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 8, 82 (2016). DOI: 10.7868/S0207352816080047 [I.I. Amirov, M.O. Izyumov, V.V. Naumov. J. Surf. Investig., 10 (4), 855 (2016). DOI: 10.1134/S1027451016040236]
  24. I.I. Amirov, M.O. Izyumov, V.V. Naumov, E.S. Gorlachev. J. Phys. D: Appl. Phys., 54, 065204 (2021). DOI: 10.1088/1361-6463/abc3ed
  25. R. Delhez, E.J. Mittemeijer. J. Appl. Cryst., 8, 609 (1975). DOI: 10.1107/S0021889875011466
  26. W.E. Sweeney Jr., R.E. Seebold, L.S. Birks. J. Appl. Phys., 31, 1061 (1960). DOI: 10.1063/1.1735746
  27. R.R. Pawar, V.T. Deshpande. Acta Cryst., A24, 316 (1968). DOI: 10.1107/S0567739468000525
  28. J. Kong, H. Shen, B. Chen, Z. Li, W. Shi, W. Yao, Zh. Qi. Thin Solid Films, 207, 51 (1992). DOI: 10.1016/0040-6090(92)90100-P
  29. R. Banerjee, E.A. Sperling, G.B. Thompson, H.L. Fraser, S. Bose, P. Ayyub. Appl. Phys. Lett., 82, 4250 (2003). DOI: 10.1063/1.1582361
  30. D. Hazra, S. Datta, M. Mondal, J. Ghatak, P.V. Satyam, A.K. Gupta. J. Appl. Phys., 103, 103535 (2008). DOI: 10.1063/1.2924332
  31. E.G. Fu, Y.Q. Wang, M. Nastasi. J. Phys. D, 45, 495303 (2012). DOI: 10.1088/0022-3727/45/49/495303
  32. R. Checchetto. Thin Solid Films, 302, 77 (1997). DOI: 10.1016/S0040-6090(96)09552-1
  33. J. Chakraborty, K. Kumar, R. Ranjan, S.G. Chowdhury, S.R. Singh. Solid State Phenom., 160, 109 (2010). DOI: 10.4028/www.scientific.net/SSP.160.109
  34. F.J. Jing, T.L. Yin, K. Yukimura, H. Sun, Y.X. Leng, N. Huang. Vacuum, 86, 2114 (2012). DOI: 10.1016/j.vacuum.2012.06.003
  35. A. Babushkin, R. Selyukov, I. Amirov. Proc. SPIE, 11022, 1102223 (2019). DOI: 10.1117/12.2521617
  36. E. Chason, J.W. Shin, S.J. Hearne, L.B. Freund. J. Appl. Phys., 111, 083520 (2012). DOI: 10.1063/1.4704683
  37. M.E. Day, M. Delfino, J.A. Fair, W. Tsai. Thin Solid Films, 254, 285 (1995). DOI: 10.1016/0040-6090(94)06259-N
  38. Р.В. Селюков, М.О. Изюмов, В.В. Наумов. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 8, 26 (2020). DOI: 10.31857/S1028096020080142 [R.V. Selyukov, M.O. Izyumov, V.V. Naumov. J. Surf. Investig., 14 (4), 777 (2020). DOI: 10.1134/S1027451020040321]
  39. F.C. Zumsteg, F.J. Cadieu, S. Marcelja, R.D. Parks. Phys. Rev. Lett., 25, 1204 (1970). DOI: 10.1103/PhysRevLett.25.1204
  40. R.A. Stager, H.G. Drickamer. Phys. Rev., 133, A830 (1964). DOI: 10.1103/PhysRev.133.A830

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.